

Five Signs You Have
Outgrown Cassandra
(and What to Do About It)

WHITE PAPER

2 Five Signs You Have Outgrown Cassandra (and What to Do About It)

Executive Summary
Cassandra is a well-known NoSQL database, maintained under the Apache Foundation and
commercialized by a number of companies. While it’s easy for organizations such as yours to start with
Cassandra, you find yourself (or soon will be) facing increasingly large costs and complexity of day-to-
day operations as your application load grows.

This impacts not only your Line of Business (LOB) budget, but also your operational stability, and further,
your customer experience. Your Cassandra infrastructure hampers your organization's ability to be agile,
to compete, and to bring new products and services to market. Aerospike, the leading enterprise-grade
NoSQL database, can save you 5x or more in Total Cost of Ownership (TCO) while providing proven,
unparalleled uptime and availability. Aerospike is used in production and trusted by industry-leading
organizations for their mission-critical applications.

Five Signs
What are the five signs that your company may have outgrown Cassandra?

3 Five Signs You Have Outgrown Cassandra (and What to Do About It)

About Aerospike

Founded in 2009, Aerospike has diligently focused on building a mission-critical, highly available,
distributed, and record-oriented key-value NoSQL database. Aerospike powers the AdTech industry; its
customers include AdForm, Applovin, AppNexus, BlueKai, InMobi, Rubicon Project, Trade Desk, and
many others. Aerospike also drives innovation in a number of other sectors, including
Telecommunications (with Nokia, HP Enterprise, Airtel, NTT, and Viettel), Financial Services, Gaming
(with King, DraftKings, and Curse), and eCommerce (with Williams-Sonoma and Kayak).

Designed and built to exploit the characteristics of Flash/SSD and poised to take advantage of storage
class memory, Aerospike provides unprecedented value to its customers. Our technology is driving
fundamental changes in how people think about, store, and access their data; it's the key ingredient for
building rich, engaging applications and services. Aerospike is driving digital transformation across many
industries by enabling our customers to build relevant systems of engagement; this includes better
recommendation engines in retail and marketing, fraud prevention in payment processing and
cybercrime detection, and billing and service enablement in telecommunications. Aerospike’s
combination of extraordinary uptime, high availability, and consistent performance all but eliminates
service disruptions for your customers.

Five Signs You Have Outgrown Cassandra
There are many business and technical demands driving your organization: delivering new applications
faster, reducing costs, providing a reliable and engaging experience, maintaining your Net Promoter
Score, driving digital transformations, and more. How do these map to the signs that you have outgrown
your Cassandra cluster?

Sign #1: Your Cassandra Clusters Are Growing at an Unexpected
Rate & You’re Worried about TCO
It's a dirty little secret: the NoSQL community and vendors have encouraged you to build big - really big -
database clusters. It became a matter of honor to be running thousands of nodes (and in Apple’s case,
75,000 nodes 1). But what are the consequences of such expansive clusters? In a large cluster, the actual
probability and incidence of having a node fail on you goes from theory to a daily - if not hourly -
occurrence. It’s dozens of hard drives or SSDs per server, over hundreds or thousands of servers.
Vendors directly benefit from your big clusters. Ever notice how they price by the node? There’s no
incentive for them to reduce their number.

1 http://cassandra.apache.org/

http://cassandra.apache.org/

4 Five Signs You Have Outgrown Cassandra (and What to Do About It)

To illustrate our point, let’s use the data presented on drive failures by Google at Fast16. This research
showed a failure rate of 1-2% for SSDs and 2-20% for HDDs. What does this mean in practical terms?
Let’s start with one server with one drive and work our way up to 75,000 servers each with 4 drives, as
you would see in very large deployments. The failure rates in increasingly large server deployments are
illustrated in Table 1 below:

Table 1. Observable failure rates in server deployments

The larger the cluster, the more components you have; hence, hardware failure goes from a mere
possibility to a practice that occurs daily, if not hourly. Server sprawl creates more hardware failures
that your operations teams need to deal with. By contrast, smaller clusters mean fewer components,
which reduces the number of actual failures with which you must deal.

Cassandra does a great job of horizontal scaling: you simply add more nodes. The more important
question is, are you able to fully utilize each node before you need to buy, provision and manage
another… and another... and another? You know the answer: you have found that Cassandra cannot
fully utilize a database node. Thus, when you hit a resource limit - either CPU, storage IOPs, or DRAM for
the JVM heap - your only alternative is to scale out. Yet each node you add creates more complexity.
Each node you add also results in significantly greater cost, because Cassandra vendors like to charge by
the node. Further, reliability suffers: the law of large numbers means that you will see actual failures,
and see them more frequently than you can imagine.

https://www.usenix.org/sites/default/files/conference/protected-files/fast16_slides_schroeder.pdf

5 Five Signs You Have Outgrown Cassandra (and What to Do About It)

As Cassandra renders you unable to utilize the performance of your servers in its entirety, you are thus
forced to perform some unnatural acts best described in the following way by the Cassandra community
and its committers:

“Instead of scaling the compute side over the metal, we do silly things like run multiple instances
per box…” 2

Indeed, running multiple Cassandra instances per box is so common that DataStax, one of the Cassandra
vendors, created a Multi-Instance feature as part of their Enterprise version to automate this
deployment topology. However, running multiple instances per server just adds further operational
complexity and compounding failure modes when a server goes down.

Why is Cassandra so inefficient with compute resources? The use of Java - with multiple JVM providers,
and with a number of garbage collection (GC) strategies (e.g., HotSpot’s CMS, G1, etc.) - create many
variables that developers and ops people can try to optimize and tune 3 4. To get the most out of a node,
you need to carefully read the logs, adjust JVM parameters, debug 5, look at thread dumps 6, etc.
Naturally, you need to do so for each different workload and cluster configuration, especially if the
hardware is different. And when you upgrade the hardware on your existing cluster? Yes, you need to
retune all over again. What if you add a new workload to existing data? You’ve guessed it - you need
to retune.

This tuning is difficult, and changes are prone to error 7. Most ops teams find it easier to expand the
cluster using the same configs and hardware profile. It’s a practical - though costly - approach for the
Line of Business owner, IT budget owner, or whoever has to pay the bill.

Think back on how you initially sized your cluster. How did you accomplish this task? You followed the
best practices from numerous community blogs, the Apache wiki, or documentation from one or more
of the vendors. Hopefully, you took into account the additional storage space needed depending on
your choice of compaction strategy (STCS vs. LCS). You may have taken into account space for
snapshots. Were you then surprised when the application was deployed and used a huge amount of
additional storage space? This is where you needed to know with precision which features the
application team used when the application was constructed, as noted by one community user:

“...we attempted to use a CQL Map to store analytics data, we saw 30X data size overhead vs.
using a simpler storage format and Cassandra’s old storage format, now called COMPACT
STORAGE. Ah, that’s where the name comes from: COMPACT, as in small, lightweight. Put
another way, Cassandra and CQL’s new default storage format is NOT COMPACT, that is, large
and heavyweight.” 8

2 https://issues.apache.org/jira/browse/CASSANDRA-7486
3 https://issues.apache.org/jira/browse/CASSANDRA-8150

4 https://issues.apache.org/jira/browse/CASSANDRA-7486

5 https://alexzeng.wordpress.com/2013/05/25/debug-cassandrar-jvm-thread-100-cpu-usage-issue/

6 https://support.datastax.com/hc/en-us/articles/204226009-Taking-Thread-dumps-to-Troubleshoot-High-CPU-Utilization

7 https://tobert.github.io/pages/als-cassandra-21-tuning-guide.html

8 http://blog.parsely.com/post/1928/cass/

https://issues.apache.org/jira/browse/CASSANDRA-7486
https://issues.apache.org/jira/browse/CASSANDRA-8150
https://issues.apache.org/jira/browse/CASSANDRA-7486
https://alexzeng.wordpress.com/2013/05/25/debug-cassandrar-jvm-thread-100-cpu-usage-issue/
https://support.datastax.com/hc/en-us/articles/204226009-Taking-Thread-dumps-to-Troubleshoot-High-CPU-Utilization
https://tobert.github.io/pages/als-cassandra-21-tuning-guide.html
http://blog.parsely.com/post/1928/cass/

6 Five Signs You Have Outgrown Cassandra (and What to Do About It)

As we will describe later, how you model data - and which features you use in Cassandra - dramatically
affects your utilization, reliability and response times.

Finally, your compaction and backup strategy can also have a huge impact on your CAPEX. Because you
are reliant on compaction to reduce storage requirements, you may end up backing up older
generations of the data again and again until the compactions can catch up. This may require significant
additional storage capacity, as was noted by Rohit Shekhar of Datos.io in his team’s experiments:

“Case in point: [...] secondary storage was as high as 12 times the primary storage for level
compaction.” 9

Sign #2: Peak Loads Are Causing Service Disruptions
Ingesting huge amounts of data - either periodically or as part of the regular usage of the application-
can be critical in many applications. However, as the data is written, the application will need to read
and modify the same data; such mixed workloads constitute the normal pattern for applications like
activity streams, profile stores, trade stores, etc. Write-once workloads, where the data is never
modified, like log streams, are not the norm.

If mixed reads and writes are such a common use case, why is this pattern such a problem for
Cassandra? Quite simply, this is due to an architectural choice made by the designers of Cassandra:
namely, its log-structured file system and the eventual consistency of data.

Kyle Kingsbury’s (a.k.a. @aphyr’s) post about Cassandra 10 states that without vector clocks, Cassandra
has to rely on a very precise usage model from its users. Without adhering to these models, Cassandra
will lose acknowledged writes, meaning that there are few guarantees to read the correct information.
As a developer, you can try to code around the problem with various consistency models 11, so you can
at least get a quorum across the copies held across the nodes of the clusters for reads and writes. This
adds unpredictable latency to any operation, as the operation can only be as fast as the slowest node.
The most common solution is to cache more of the data to avoid disk reads; this leads to larger clusters
and more DRAM, violating many of the tuning guides regarding the size of the JVM heap.

That’s not the only challenge for mixed workloads, as was noted by the venerable Oracle corporation:

“Cassandra uses consistent hashing over a peer-to-peer architecture where every node in the
system can handle any read-write request, so arbitrary nodes become coordinators of requests
when they do not actually hold the data involved in the request operation. That means both an
extra network hop (minimum) for each call and it means the failure of a single node can have

 9 https://datos.io/backup-challenges-cassandra-compaction/

10 https://aphyr.com/posts/294-jepsen-cassandra

11 https://docs.datastax.com/en/cassandra/2.0/cassandra/dml/dml_config_consistency_c.html

https://datos.io/backup-challenges-cassandra-compaction/
https://aphyr.com/posts/294-jepsen-cassandra
https://docs.datastax.com/en/cassandra/2.0/cassandra/dml/dml_config_consistency_c.html

7 Five Signs You Have Outgrown Cassandra (and What to Do About It)

system wide performance impacts as other arbitrary nodes change their behavior in response to
the failed node.” 12

One Cassandra vendor also acknowledged this behavior in their documentation:

“Client read or write requests can be sent to any node in the cluster. When a client connects to a
node with a request, that node serves as the coordinator for that particular client operation. The
coordinator acts as a proxy between the client application and the nodes that own the data
being requested. The coordinator determines which nodes in the ring should get the request
based on how the cluster is configured.” 13

Thus, even in healthy clusters, there are inevitable network hops to service the simplest of requests.
These compounding factors lead to a wide variance in read latencies. Choosing a sensible partition key is
only a partial solution: it simply limits the number of nodes that must be checked rather than
eliminating the need in the first place.

During any situation where nodes become unavailable, further memory pressure 14 is applied to the
coordinator node, since it needs to keep track of any hinted handoff for writes that will need to be re-
applied later. This memory pressure can lead to instability throughout the cluster, as we will see in the
next sign.

Compactions add another layer of complexity. In any log-structured merge file system, you need to
periodically prune and compress the trees, removing older and redundant version of the data and
cleaning tombstones (deleted records). Cassandra has both major and minor compactions, which the
community spends a lot of time figuring out how to tune for the given workload and hardware 15. This is
a significant problem: during the time compactions run, they adversely affect the read and write latency
and throughput of operations, and impact your SLAs (again). You know this when your log files start to
get sprinkled with the following types of error messages:

How can you better deal with peak load, then? You will want to expand your Cassandra cluster as part of
your regular capacity planning, or to deal with seasonal events like holiday sales. But don’t wait until the
last moment to expand your cluster, or you risk being too late. Some guides, such as the Threat Stack
Blog, state:

“Budget days to bring a node into the cluster. If you’ve vertically scaled [with fewer large nodes],
then it will take over a week.” 16

12 http://www.oracle.com/technetwork/database/nosqldb/overview/ondb-cassandra-hbase-2014-2344569.pdf

13 http://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archIntro.html
14 http://www.datastax.com/dev/blog/modern-hinted-handoff

15 https://medium.com/@foundev/how-i-tune-cassandra-compaction-7c16fb0b1d99#.78lo047w7

16 http://blog.threatstack.com/scaling-cassandra-lessons-learned

http://www.oracle.com/technetwork/database/nosqldb/overview/ondb-cassandra-hbase-2014-2344569.pdf
http://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archIntro.html
http://www.datastax.com/dev/blog/modern-hinted-handoff
https://medium.com/@foundev/how-i-tune-cassandra-compaction-7c16fb0b1d99#.78lo047w7
http://blog.threatstack.com/scaling-cassandra-lessons-learned

8 Five Signs You Have Outgrown Cassandra (and What to Do About It)

And as you expand your Cassandra cluster, expect that this will have operational impact and that your
application will have missed SLAs. As one community user remarked:

“The bottom line, is that your queries do have a higher chance of failing before the new node is
fully-streamed.” 17

Sign #3: You’ve Learned to Live With Cascading Failures
For mission-critical systems, availability is the most crucial aspect of a data layer. After all, isn’t
availability why you picked AP from the CAP theorem and selected Apache Cassandra in the first place?
You’ve chosen a system that has distribution and replication of data, so when a node becomes
unavailable - momentarily or permanently - the data lives elsewhere. Right?

Wrong, actually. Data distribution sounds well and good (and is the correct solution), but if a single node
outage causes a cascading failure across your cluster, every node becomes the single point of failure for
the cluster. And cascading failures are common 18 19, especially when CPU pressure causes nodes to stop
self-reporting 20 and inflicting cluster rebalances, causing further CPU and I/O pressure on the surviving
nodes. As one Cassandra user noted, “Cassandra seems to have two modes: fine and catastrophic”. 21

The failure of one node has often been observed to cause cascading failures 22 23 across the whole
cluster. Research papers have shown these problems to be systemic with Cassandra 24.

What, then, are the typical sources of cascading failures? They include:

• Memory pressure caused by hinted handoff during failover
• Compactions trashing the row cache
• I/O and memory pressure from memtable flushes during high load
• Compactions causing I/O, and thus, CPU pressure
• Compactions not occurring fast enough, causing memory pressure
• Memory use causing frequent garbage collection, and thus, CPU pressure
• A large number of tables, causing memory pressure

Let us tackle each of these in turn.

Memory Pressure caused by hinted handoff during failover - As noted by one Cassandra vendor in
several pages of their documentation, the cause of this is clear. If you rely on Cassandra’s ability to store
writes on a coordinator node to replay later when the designated node returns to the cluster, this

17 http://stackoverflow.com/questions/37283424/best-way-to-add-multiple-nodes-to-existing-cassandra-cluster

18 http://danluu.com/postmortem-lessons/

19 https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan

20 https://moz.com/devblog/cassandra-in-production-things-we-learned/

21 http://www.slideshare.net/planetcassandra/pd-melting-cass/12?src=clipshare

22 http://mail-archives.apache.org/mod_mbox/cassandra-user/201106.mbox/%3CBANLkTinqdatJs2u-khFngboSP6h-621=Pw@mail.gmail.com%3E

23 http://www.stackdriver.com/post-mortem-october-23-stackdriver-outage/

24 http://ucare.cs.uchicago.edu/pdf/socc14-cbs.pdf

http://stackoverflow.com/questions/37283424/best-way-to-add-multiple-nodes-to-existing-cassandra-cluster
http://danluu.com/postmortem-lessons/
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan
https://moz.com/devblog/cassandra-in-production-things-we-learned/
http://www.slideshare.net/planetcassandra/pd-melting-cass/12?src=clipshare
http://mail-archives.apache.org/mod_mbox/cassandra-user/201106.mbox/%3CBANLkTinqdatJs2u-khFngboSP6h-621=Pw@mail.gmail.com%3E
http://www.stackdriver.com/post-mortem-october-23-stackdriver-outage/
http://ucare.cs.uchicago.edu/pdf/socc14-cbs.pdf

9 Five Signs You Have Outgrown Cassandra (and What to Do About It)

functionality consumes large quantities of memory; thus, another node’s outage causes significant
memory pressure on all the other nodes:

"If this happens on many nodes at once this could become [sic] substantial memory pressure on
the coordinator. So the coordinator tracks how many hints it is currently writing, and if this
number gets too high it will temporarily refuse writes (with) whose
replicas include the misbehaving nodes." 25

This is not just a theoretical problem; it's a very real one that’s a function of your data usage and data
design with hinted handoff, as was noted by one Cassandra user:

“Serializing the big rows causes high memory pressure…” 26

Users of Cassandra often recommend disabling hinted handoffs - and thus reducing availability - to
avoid cascading failures:

“Don’t use hinted handoffs (ANY or LOCAL_ANY quorum). In fact, just disable them in the
configuration. It’s too easy to lose data during a prolonged outage or load spike, and if a node
went down because of the load spike you’re just going to pass the problem around the ring,
eventually taking multiple or all nodes down” 27

Compactions trashing the row cache - As noted by another Cassandra vendor, compactions, which
increase during a single node outage as greater load is applied on surviving nodes, also increase pressure
on the I/O, memory, and CPU of those nodes:

“Cassandra compaction thrashes the [O/S] page cache, because it reads and writes everything,
and after compaction the most frequently used data is likely to no longer be in the cache.” 28

A Cassandra cluster is often sized using assumptions about the effectiveness of the row cache; an
ineffective row cache leads to a greater number of connections and transactions in flight. This causes
difficulty (at the very least, performance issues) for surviving nodes. However, the effects of the cache
are negated when the blocks being cached are paged out by another database feature.

I/O and memory pressure from memtable flushes during high load - Flushing memtables is critical
because writes are blocked until the flush succeeds 29. But there is a cascading effect if flushing is not
tuned correctly:

“... proper tuning of these thresholds is important in making the most of available system
memory, without bringing the node down for lack of memory.” 30

Indeed, during a node outage, your carefully selected tuning becomes invalid.

25 http://www.datastax.com/dev/blog/modern-hinted-handoff

26 http://java.cz/dwn/1003/72451_CassandraCZJUG_horky.pdf

27 http://blog.threatstack.com/scaling-cassandra-lessons-learned

28 http://www.scylladb.com/technology/memory/

29 https://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_write_path_c.html

30 https://wiki.apache.org/cassandra/MemtableThresholds

http://www.datastax.com/dev/blog/modern-hinted-handoff
http://java.cz/dwn/1003/72451_CassandraCZJUG_horky.pdf
http://blog.threatstack.com/scaling-cassandra-lessons-learned
http://www.scylladb.com/technology/memory/
https://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_write_path_c.html
https://wiki.apache.org/cassandra/MemtableThresholds

10 Five Signs You Have Outgrown Cassandra (and What to Do About It)

Compactions causing I/O, and thus, CPU pressure - Choosing Leveled vs. Size-Tiered compactions will
dramatically change I/O and CPU pressure. This is a function of the reads and writes at this moment in
time: a predominantly read-heavy application will get the adverse effects of a data load job, causing
pressure on both I/O and CPU.

As was noted by one vendor:

“Since SSTables are immutable, this process puts a lot of pressure on disk io as SSTables are
read from disk, combined and written back to disk.” 31

Compactions not occurring fast enough, causing memory pressure - The immutable nature of
Cassandra's log structure means that the process of compactions is not only inevitable; depending on
your data access patterns, it may downright imprison you. Indeed, when “the compaction is not able to
complete” 32 , this causes unavailability. As was also expressed on Target’s tech blog:

“The nodes would OOM frequently when compacting a specific column family… What I
discovered is that Cassandra was reading a lot of tombstones each time, and this was putting
lots of extra data on the heap. This would just snowball when the cluster was under load, and
blow the heap.” 33

Memory use causing frequent garbage collection, and thus, CPU pressure - With a Java-based code
base, garbage collection is inevitable and uncontrollable. Tuning is possible, but often described as a
“dark art”. Unfortunately, the side effects of garbage collection are real, as users report:

“...garbage collection was happening 20+ times a second, even when Cassandra was under
tiny load.” 34

“In both cases the C* nodes end up doing garbage collection for ~90 secs per sweep” 35

This impacts the latency of responses and throughput of the system, as vital system resources are used
to manage memory.

A large number of tables, causing memory pressure - The way in which you constructed the data
schema can also impact the memory pressure, and changes to application design and use can radically
change hardware requirements. As noted by Ryan Svihla, a Solution Architect at DataStax:

“There is in general a cluster max effectively [sic] limit on table counts. Anything over 300 starts
to create significant heap pressure.” 36

31 http://www.planetcassandra.org/blog/impact-of-shared-storage-on-cassandra/

32 http://stackoverflow.com/questions/29273276/cassandra-node-heap-pressure-during-compaction-after-bulk-load

33 http://target.github.io/infrastructure/tuning-cassandra

34 http://target.github.io/infrastructure/tuning-cassandra

35 http://stackoverflow.com/questions/29273276/cassandra-node-heap-pressure-during-compaction-after-bulk-load

36 https://medium.com/@foundev/domain-modeling-around-deletes-1cc9b6da0d24#.goi7cxibs

http://www.planetcassandra.org/blog/impact-of-shared-storage-on-cassandra/
http://stackoverflow.com/questions/29273276/cassandra-node-heap-pressure-during-compaction-after-bulk-load
http://target.github.io/infrastructure/tuning-cassandra
http://target.github.io/infrastructure/tuning-cassandra
http://stackoverflow.com/questions/29273276/cassandra-node-heap-pressure-during-compaction-after-bulk-load
https://medium.com/@foundev/domain-modeling-around-deletes-1cc9b6da0d24#.goi7cxibs

11 Five Signs You Have Outgrown Cassandra (and What to Do About It)

Sign #4: Your Operations Team Is Growing Disproportionately &
The Cost of Support Is Concerning

The number of aspects that an operational team must consider at cluster provisioning time is large. This
leads to a time-consuming process for provisioning each cluster. Worse, the operations team must
continually monitor Cassandra clusters for changes in application patterns, and re-tune the clusters on a
frequent basis. Failure to retune leads not only to poor performance, but also (eventually) to CPU
pressure, which limits garbage collection capabilities; this causes memory pressure, and in turn, outages.

The community and committers are well aware that Cassandra cannot utilize compute resources
effectively, as can be seen on Cassandra’s own issue tracking system:

“Instead of scaling the compute side over the metal, we do silly things like run multiple instances
per box. It’s not really silly if it gets results, but it is an example of where we do something
tactically, get so used to it as a necessary complexity, and then just keep taking for granted that
this is how we do it.” 37

In order to increase utilization, clusters are forced to get wider, and multiple Cassandra nodes are
commonly required on the same compute node. This pattern greatly increases operational complexity,
necessitating not just more time from your operations staff to plan and deploy, but also more complex
and compounding failure modes to diagnose and fix.

The setup of the JVM and other tuning parameters for the specific workload and hardware means there
is no “out of the box” setting that will consistently work. Tuning is inevitable, as the committers of
Cassandra themselves have noted:

“... there's a bunch of different workloads and a bunch of different hardware that C* runs on,
and the idea of having a default that's optimal for everyone is unrealistic. It may very well be
that G1 is a better "good enough" default for most distributions, large heap or no, and that's the
conversation on IRC… ” 38

The fact that tuning is a necessity can have a significant impact on day-to-day operations, as Daniel
Parker, an Engineer at Target, observed:

“We were having to restart nodes frequently to clear the heap. This was not an option to
continue doing, especially pre-peak when we expect nearly 10x the traffic volume.” 39

37 https://issues.apache.org/jira/browse/CASSANDRA-7486

38 https://issues.apache.org/jira/browse/CASSANDRA-10403

39 http://target.github.io/infrastructure/tuning-cassandra

https://issues.apache.org/jira/browse/CASSANDRA-7486
https://issues.apache.org/jira/browse/CASSANDRA-10403
http://target.github.io/infrastructure/tuning-cassandra

12 Five Signs You Have Outgrown Cassandra (and What to Do About It)

Sign #5: Hiring Dedicated Cassandra Experts Has Become
Unavoidable and Difficult

Technical resources are always hard to find, employ and retain. Finding staff with deep expertise - even
Apache code committers - is a step beyond most organizations’ capabilities; yet, this is often
recommended to effectively operate Cassandra clusters. Is it truly a badge of honor to have a team of
committers like Netflix or Apple 40, or even employing and motivating a team of “Cassandra
whisperers” 41? Does your business cost structure allow several hundreds of thousands of dollars per
year in head-count to maintain free software? Can you justify buying a company 42 just for its Cassandra
expertise? As Ted Wallace, VP of Data Delivery at BlueKai, noted:

“We ultimately found out that to do Cassandra you need people who are focused on keeping
Cassandra alive and running. We didn’t want to invest in creating a team of ‘Cassandra
whisperers’. We didn’t want to be experts at managing Cassandra” 43

Your operations staff must also understand the differences between the multiple versions of Cassandra,
and be able to tune effectively for different versions. Will your staff choose the generic Apache
Cassandra distribution, or a vendored version created by your Cassandra distributor? If your team
selects a Cassandra distributor, will they provide current releases? Will they keep up with the
community for features, bug fixes, vulnerabilities and currency, or will your operations staff need to
patch a vendor distribution with fixes from the open source version? Even a core committer like
DataStax will defer the migration from Apache Cassandra 2.1 to 3.0 in their enterprise releases; is your
organization willing to wait? As narrated by DataStax themselves in 2016:

“Today, it typically takes DataStax four to six months to certify a new, major version of open
source Cassandra and ensure it is ready for enterprise deployments. This time may shorten as the
tick-tock process drives down defect rates.” 44

40 http://www.planetcassandra.org/mvps/

41 http://www.aerospike.com/blog/bluekai-nosql-speed-scale-simplicity/

42 http://appleinsider.com/articles/15/03/25/apple-acquires-big-data-analytics-firm-acunu

43 http://www.aerospike.com/blog/bluekai-nosql-speed-scale-simplicity/

44 http://web.archive.org/web/20160322221453/http://www.datastax.com/2016/01/comparing-open-source-apache-cassandra-and-datastax-enterprise-release-
models

http://www.planetcassandra.org/mvps/
http://www.aerospike.com/blog/bluekai-nosql-speed-scale-simplicity/
http://appleinsider.com/articles/15/03/25/apple-acquires-big-data-analytics-firm-acunu
http://www.aerospike.com/blog/bluekai-nosql-speed-scale-simplicity/
http://web.archive.org/web/20160322221453/http:/www.datastax.com/2016/01/comparing-open-source-apache-cassandra-and-datastax-enterprise-release-models
http://web.archive.org/web/20160322221453/http:/www.datastax.com/2016/01/comparing-open-source-apache-cassandra-and-datastax-enterprise-release-models

13 Five Signs You Have Outgrown Cassandra (and What to Do About It)

The reality is that it often takes a minimum of eight months to vendor in Apache code. Here is an
example of the release timeline for the DataStax Enterprise Edition:

 Figure 1. Vendoring in Cassandra releases from Apache

You will be left with a choice between the following options: wait until a patch is vendored in, uptake a
newer Apache release yourself (and abandon your support subscription), or fix the code base you have.

Committing changes between distributions is just one more complex task for your operations staff to
undertake. Your staff’s harder challenge occurred much earlier in the process - when the application
developers designed the schema, primary and partition keys, and decided on which features to use. As
Juan Valencia, Principal Engineer at ShareThis, offered:

“We've made a lot of mistakes in data modeling over the course of development. Setting up our
data models correctly was tricky.” 45

Distributed counters seem like a reasonable feature for a distributed database, especially when
performing real-time analytics, and likely, the application team chose them. But as noted by Andrew
Montalenti, CTO of Parse.ly:

“When I’m in a good mood, I sometimes ask questions about Counters in the Cassandra IRC
channel, and if I’m lucky, long-time developers don’t laugh me out of the room. Sometimes, they
just call me a “brave soul”... All of this is to say: Cassandra Counters — it’s a trap! Run!” 46

Your operations staff can’t rest by just creating a checklist of features used; they must know how the
data is used, and what its lifecycle is. Consider something simple like a queue, where you need to
maintain order and also expunge data as soon as it’s processed. That simple data model design leads to

45 http://www.informationweek.com/strategic-cio/why-we-picked-cassandra-for-big-data/a/d-id/1318250

46 http://blog.parsely.com/post/1928/cass/

http://www.informationweek.com/strategic-cio/why-we-picked-cassandra-for-big-data/a/d-id/1318250
http://blog.parsely.com/post/1928/cass/

14 Five Signs You Have Outgrown Cassandra (and What to Do About It)

operational problems down the road, as Cassandra then needs to manage large numbers of tombstones
(deleted records). As Ryan Svihla, a Solution Architect at DataStax, remarked:

“You realize that based on your queue workflow instead of 5 records you’ll end up with millions
and millions per day for your short lived queue, your query times end up missing SLA and you
realize this won’t work for your tiny cluster.” 47

The use of TTL (Time-To-Live) as a mechanism to remove data after a specified time period is another
potential trap. As one Cassandra user observed in their own attempts to use TTLs:

“... [TTL auto-expire] was able to effect a denial of service for all logins through creating a large
amount of garbage [tombstone] records. Once the records for these failed logins had expired, all
queries to this table started timing out.” 48

Finally, your operations staff must absorb the consequences of your development staff picking the
wrong primary or partition key. A poor choice inevitably ends up with hotspot nodes, which can cause
one or more of the following: high memory, CPU pressure, or I/O pressure. This leads to the kind of
cascading failures described above. One story from the community demonstrates this chain reaction:

“The failing node, in fact, was a hotspot! Because of an error in a primary key of one of a high
loaded table! Table's data was not properly distributed across all cluster nodes. And the large
portion of data was concentrated on that node! This led to two problems:
 1 - significant amount of queries (read/write) were addressed to that node;
 2 - huge keys - about ~5 megs per key;
These two problems led to node load and, due to huge keys, instability (high pressure on GC).” 49

47 https://medium.com/@foundev/domain-modeling-around-deletes-1cc9b6da0d24#.goi7cxibs

48 https://www.tildedave.com/2014/03/01/application-failure-scenarios-with-cassandra.html

49 https://www.reddit.com/r/cassandra/comments/3uzlnp/cassandra_high_gc_pressure/

https://medium.com/@foundev/domain-modeling-around-deletes-1cc9b6da0d24#.goi7cxibs
https://www.tildedave.com/2014/03/01/application-failure-scenarios-with-cassandra.html
https://www.reddit.com/r/cassandra/comments/3uzlnp/cassandra_high_gc_pressure/

15 Five Signs You Have Outgrown Cassandra (and What to Do About It)

Aerospike: The Enterprise-Grade NoSQL

As noted earlier, Aerospike was designed and built from the ground up to take advantage of modern
computing architectures. Aerospike undertook an alternative approach, building from a clean sheet a
technology stack and fundamental IP that has enabled its customers to obtain and enjoy an
unprecedented low TCO (Total Cost of Ownership), unparalleled uptime, high availability, and reduced
database infrastructure complexity. Let's explore how Aerospike has achieved this.

Reduced TCO
Aerospike is written in C by a development team with deep expertise in networking, storage and
databases. By removing the layers of file system, block, and page caches, and instead building a
proprietary log-structured file system designed for the way flash devices work, Aerospike can deliver
unprecedented resource utilization. The bottom line is that Aerospike clusters are sized to have (on
average) at least 5 times fewer servers than the equivalent Cassandra cluster. For instance, AdForm was
able to decrease its number of nodes from 32 with Cassandra to 3 with Aerospike, and achieve a
fourfold expansion of data 50. Aerospike enabled the company to sustain the identical throughput as
with their old Cassandra cluster, but with lower - and consistent - latency, and unmatched availability.
As Jakob Bak, AdForm’s CTO, notes:

“With Aerospike, we have been able to drastically cut down on the number of Cassandra servers,
which provided a great cost reduction.” 51

Lower cost. Higher availability. Predictable performance. You get to pick all three with Aerospike. The
recently published YCSB benchmark comparing Aerospike and Cassandra shows in great detail how to
prove to yourself this reduction in costs. Using the standard YCSB benchmark, we observed the following
gains:

Table 2. Summary of YCSB Benchmark, Aerospike vs. Cassandra

50 https://vimeo.com/101290545 and http://www.aerospike.com/adform-divorces-cassandra-scales-4x-with-2x-reduced-servers/

51 http://www.aerospike.com/industry/adtech/adform-divorces-cassandra-scales-performance-by-4x-with-2x-fewer-servers/

http://www.aerospike.com/press-releases/adform-scales-real-time-cut-server-requirements-aerospike/
http://www.aerospike.com/blog/comparing-nosql-databases-aerospike-and-cassandra/
https://vimeo.com/101290545
https://vimeo.com/101290545
https://vimeo.com/101290545
http://www.aerospike.com/adform-divorces-cassandra-scales-4x-with-2x-reduced-servers/
http://www.aerospike.com/industry/adtech/adform-divorces-cassandra-scales-performance-by-4x-with-2x-fewer-servers/

16 Five Signs You Have Outgrown Cassandra (and What to Do About It)

Table 2 shows Aerospike’s ability to fully utilize the hardware. But it's not just speeds and feeds that
prove Aerospike’s superiority. Accordingly, let's illustrate a simple TCO calculation - based on actual
Aerospike customer data - with the savings our customers were able to achieve (Table 3):

 Table 3. Cost Comparison, Aerospike vs. Cassandra

Table 3 represents a composite of multiple Cassandra replacements derived from actual customer
implementations. The table depicts a 3-year TCO comparison - for exactly the same problem set - using a
Cassandra solution vs. an Aerospike solution. To generate this table, we first estimated the size of the
Cassandra cluster required; we then estimated the size of the required Aerospike cluster under the
same assumptions. The existing Cassandra clusters used HDDs, while the Aerospike cluster was sized to
use SSDs. Despite the cost difference between both drive types (SSDs cost more), the cumulative 3-year
TCO savings obtained by using an Aerospike solution are very clear and real.

Even if your Cassandra costs are sunk costs in the short term (for example, because you have pre-
purchased a year's worth of instance hours with a cloud provider), switching to Aerospike right now
starts the process of saving money. Using the data above, this would still result in a savings of nearly
$6M by Year 3.

As Aerospike is a native C implementation, there are no inefficiencies from a Java runtime. The primary
key index is stored as a parentless red-black tree, enabling ultra-fast key lookups in DRAM; the data is
then retrieved from the proprietary log-structured file system. This file system allows parallelization
across all the devices on the chassis; a typical Aerospike node will have 8-12 SSDs - sometimes as many

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

17 Five Signs You Have Outgrown Cassandra (and What to Do About It)

as 16. By reading and writing in parallel to all devices, and removing the block and page caches,
Aerospike can fully utilize all the IOPs and disk slots available before running out of CPU.

Aerospike’s implementation is not faster simply because it uses C. It uses performance-tuned libraries,
such as re-implementations of msgpack, and specific tested versions of JEMalloc. The code is a highly
optimized, reference-counted multithreaded implementation, requiring certain developer skills in which
Aerospike specializes.

Predictable Performance
Since Aerospike has master-based replication, operations are forwarded to the primary node for the
record. This is equivalent to having a specific coordinator node for each portion of the data. The Primary
Key is generated by a cryptographic algorithm, RIPEMD-160, used by the Bitcoin algorithm, which has
had zero detected hash collisions in any use. The first twelve bits of this generated hash identify the
partition where the record resides.

Aerospike supports all the popular languages (C/C++, C#, Java, Python, Go, Node.js, PHP, Ruby, Perl, and
Erlang) with a vendor-supported language client. These high-performance native clients provide
translation of native datatypes to and from Aerospike, as well as interoperability between languages,
greatly improving developer productivity.

Unlike the proxy model used in Cassandra, where requests are rerouted by the Coordinator node,
Aerospike clients maintain a dynamic partition map. This identifies the master node for each partition,
which enables the client to route the read or write request directly to the correct node without any
additional network hops. Unlike Cassandra's Coordinator, this removes an unnecessary network hop.
Because the data is written synchronously to all copies of the data, there is no need to do any form of
quorum read across the cluster to get a consistent version of the data. As AdForm’s CTO, Jakob Bak,
opines:

“Even more important is the super fast key-value store and extraordinary predictability we get
with Aerospike, providing the responsiveness our clients require to compete in the crowded
Internet and mobile markets.” 52

52 http://www.aerospike.com/industry/adtech/adform-divorces-cassandra-scales-performance-by-4x-with-2x-fewer-servers/

https://en.wikipedia.org/wiki/RIPEMD
http://www.aerospike.com/industry/adtech/adform-divorces-cassandra-scales-performance-by-4x-with-2x-fewer-servers/

18 Five Signs You Have Outgrown Cassandra (and What to Do About It)

This approach enables Aerospike to excel at mixed read/write workloads, without the unnecessary
complications and impact to latency of eventually consistent systems. To this point, Valery Vybornov,
Head of R&D at IMHO Vi, notes:

“It met our demands for random access response time (mixed reads/writes) under our typical
load of several hundred writes/some thousand reads per second.” 53

Yet Aerospike is about more than maintaining predictable performance for a short burst of time, or
shining in 5-minute benchmarks. Aerospike enables predictable performance over days and months -
the type of performance that allows your business and applications to grow seamlessly as you broaden
your presence in local and international markets. As Ko Baryimes, Kayak’s SVP of Technology, observes:

“As we continue to rapidly expand into international markets, we needed a solution that was
reliable and could scale to serve offers across our network. Aerospike enabled us to achieve
multi-key gets in less than 3 milliseconds, deploy with ease and scale with very low jitter.” 54

Predictable scaling was key to the success of Aerospike at marketing analytics firm Ix+1I, as their CTO,
Patrick DeAngelis, expresses:

“We’ve seen Aerospike scale to a few billion key values with no compromise to performance, and
we’ve even seen response times under 1 ms, which is phenomenal.” 55

53 http://www.aerospike.com/blog/scaling-to-meet-russias-rapid-internet-ad-trajectory/

54 http://www.aerospike.com/press-releases/kayak-selects-aerospike-delivers-personalized-offers-at-scale/

55 http://s3-us-west-1.amazonaws.com/aerospike-fd/wp-content/uploads/2015/02/x-1casestudy_2012.pdf

http://www.aerospike.com/blog/scaling-to-meet-russias-rapid-internet-ad-trajectory/
http://www.aerospike.com/press-releases/kayak-selects-aerospike-delivers-personalized-offers-at-scale/
http://s3-us-west-1.amazonaws.com/aerospike-fd/wp-content/uploads/2015/02/x-1casestudy_2012.pdf

19 Five Signs You Have Outgrown Cassandra (and What to Do About It)

As we saw above, the recent Cassandra benchmark results showed the overall TCO savings that are
possible with Aerospike. But this is just part of the story. A comparison of the variance of Aerospike vs.
Cassandra - that is, the range of response times and throughput, rather than a simple average - tells a
very interesting tale:

Figure 2. Measured variance in read/write throughput and latency

As Figure 2 illustrates, during the twelve hours that the benchmark ran, the variance in throughput and
latency for both read and write operations varied hugely for Cassandra (marked in blue). In contrast, this

http://www.aerospike.com/blog/comparing-nosql-databases-aerospike-and-cassandra/
http://www.aerospike.com/blog/comparing-nosql-databases-aerospike-and-cassandra/
http://www.aerospike.com/blog/comparing-nosql-databases-aerospike-and-cassandra/

20 Five Signs You Have Outgrown Cassandra (and What to Do About It)

variance remained in a very narrow band for Aerospike (marked in red). What this translates to is
consistent response and throughput characteristics for your applications: Aerospike is very predictable,
making it trivial for you to meet your application SLAs not just now, but also in the future.

Proven Reliability
Aerospike uses a shared-nothing architecture, where all nodes are peers, without any node having a
specific role. It is built with a unique master-based cluster algorithm. A single node will be the owner or
the primary node for that partition. If a replication factor is defined, then there will be N number of
other nodes that have a copy of that record for reliability. If you lose a node, then you have another
copy. And unlike other systems, Aerospike writes synchronously across all copies of the data.

When a node fails or is removed from the cluster, any node that has a secondary copy of the partition
can be instantly promoted to be the master of that partition, without the typical delays imposed by a
consensus algorithm. Aerospike uses the Paxos algorithm to ensure consensus across the cluster, but
since each node is equal in its role and equal with the current state of the data, any of the secondary
nodes can be promoted. This has allowed an organization like AppNexus to minimize downtime, as
expressed by its CTO, Geir Magnusson:

“2.5 million impressions a second at peak, although we can go much higher, and we see north of
90 Billion impressions per day and this is a 24×7 business with 100% uptime with Aerospike.” 56

Valery Vybornov, Head of R&D at IMHO Vi’s, has a very similar story:

“We also considered the Aerospike database’s maturity and stability—most notably that it has
been running in production non-stop for almost four years.” 57

Beyond “fair-weather” performance and availability, you also need a system that can deal with human
(e.g., “phat fingering”) or natural disasters (e.g., the weather). Aerospike has the ability to ensure
availability across regions using Cross Datacenter Replication (XDR). During Superstorm Sandy that hit
the East Coast of the United States in 2012, this feature allowed adMarketplace to maintain availability
without a hitch, as their company’s CTO, Mike Yudin, narrates:

“We do a 100% uptime. We lost one of our data centers in the flood [Hurricane Sandy], and it’s
not just the data center itself that lost power, it’s the entire network infrastructure of the tri-
state major area, all the backbones... How did we do this? We do this by having redundant, not
only redundant equipment within the data center, but also the globally load-balanced
infrastructure across multiple locations. If one gets flooded, then traffic just gets shifted into the
data center that survives. The trick here of course is to make sure that your location has all the
same data and all the same intelligence as the system that got destroyed.” 58

56 http://www.aerospike.com/why-appnexus-uses-aerospike/

57 http://www.aerospike.com/blog/scaling-to-meet-russias-rapid-internet-ad-trajectory/

58 http://www.aerospike.com/blog/super-storm-sandy-and-100-uptime/

http://www.aerospike.com/why-appnexus-uses-aerospike/
http://www.aerospike.com/blog/scaling-to-meet-russias-rapid-internet-ad-trajectory/
http://www.aerospike.com/blog/super-storm-sandy-and-100-uptime/

21 Five Signs You Have Outgrown Cassandra (and What to Do About It)

Peopleware
Hiring and retaining staff is always a critical task in any organization. You need to ensure that the
services and applications you build and deploy meet the time to market (TTM) needs of the
organization. Yet people costs should never be excluded from this calculation. The long-term care and
maintenance of your infrastructure is a real cost which you need to drive down - if only to spend your
company's energy on unique business functions, not database maintenance. From an operational
perspective, Aerospike radically simplifies running and maintaining a distributed database, as expressed
by BlueKai’s VP of Delivery, Ted Wallace:

“It just works and then you move on. We’ve done that repeatedly over the course of the past 2.5
years and it’s always just worked. That’s been awesome.” 59

Contrast this with the typical advice from the Cassandra community - for instance, Sam Bisbee, CTO of
Threat Stack:

“Don’t under staff Cassandra. This is hard as a start up, but recognize going in that it could
require 1 to 2 FTEs as you ramp up, maybe more depending on how quickly you scale up.” 60

Operational Simplicity
The true value of complex technology is its simplicity of usage, especially in challenging production
environments. You do not want to consume time and energy as the cluster expands, or when you
refresh the hardware or migrate to a new Data Center. You want to use your database infrastructure like
a utility, adding capacity as and when you need to, without the need to perform extensive planning for
maintenance windows. As Tapad’s CEO, Dag Liodden, states:

“Aerospike makes upgrading simple. That’s the beauty of this product. There’s no planning
required. You can take servers down, and still have the system running.” 61

Aerospike achieves this with the operational simplicity of self-forming and self-healing clusters, which
are both rack-aware and data center-aware. No downtime is required to add or remove nodes from a
cluster; it automatically re-distributes partitions of data to ensure the new compute resources are
efficiently used. Rack awareness also ensures that data is correctly separated to avoid compounding
failures. Using a proprietary algorithm, nodes can be restarted - for example, to perform a software
upgrade - but the memory contents are preserved, allowing the process to restart without the need to
warm the memory buffers and caches in just seconds, as the data was never evicted from DRAM.

59 http://www.aerospike.com/blog/bluekai-nosql-speed-scale-simplicity/

60 http://blog.threatstack.com/scaling-cassandra-lessons-learned

61 http://s3-us-west-1.amazonaws.com/aerospike-fd/wp-content/uploads/2015/02/Tapad_CaseStudy_101012.pdf

http://www.aerospike.com/blog/bluekai-nosql-speed-scale-simplicity/
http://blog.threatstack.com/scaling-cassandra-lessons-learned
http://s3-us-west-1.amazonaws.com/aerospike-fd/wp-content/uploads/2015/02/Tapad_CaseStudy_101012.pdf

22 Five Signs You Have Outgrown Cassandra (and What to Do About It)

As Ted Wallace from BlueKai opines:

“In the case of Aerospike, when we need more capacity in our cluster, we get a machine ready,
add it to the cluster and step away. It just works. That is very empowering and very rewarding
when you don’t have to have somebody spend days creating a documented process, to get
approvals, you don’t have to send notifications out to your customers because there is downtime
because you have to do some massive database maintenance. It just works and then you move
on.” 62

Amey Patil, Big Data Engineer at Crowdfire adds:

“Due to its master-master replication model, we do not have to worry about rebalancing,
failover or recovery! This has definitely pleased our DevOps team. ;-)” 63

Complex technology does not have to be complex to use and operate. Period.

62 http://www.aerospike.com/blog/bluekai-nosql-speed-scale-simplicity/

63 https://crowdfire.engineering/why-we-chose-aerospike-over-other-databases-1dfa2d66a292#.27jfii8t1

http://www.aerospike.com/blog/bluekai-nosql-speed-scale-simplicity/
https://crowdfire.engineering/why-we-chose-aerospike-over-other-databases-1dfa2d66a292#.27jfii8t1

23 Five Signs You Have Outgrown Cassandra (and What to Do About It)

Summary

In Table 4 below, we contrast the five signs you’ve outgrown Cassandra with their corresponding
solution using Aerospike:

Table 4. Characteristics of Aerospike vs. Cassandra across key attributes

24 Five Signs You Have Outgrown Cassandra (and What to Do About It)

Aerospike believes in three core principles:

1. Being built for modern computing architectures, and ready for the next generation of hardware
2. Master-based clustering, which means simple scaling and failover
3. Simple Developer Experience (DX)

Being built for modern computing architectures, and ready for the next generation of hardware - By
designing early and understanding the deep and significant technology trends, Aerospike has positioned
itself as the only NoSQL database system designed and equipped to fully utilize Flash/SSD and storage
class memory systems. By being able to fully parallelize reads and writes to storage, Aerospike can drive
12, 14, even 16 SSD/Flash devices per chassis; it runs out of IOPs before you run out of CPU cycles. This
is a huge cost savings over trying to use DRAM and cache-based solutions 64. These characteristics make
cloud-based deployments viable for high transactional loads typically only reserved for on-premise
deployments. High-memory instances and in-memory solutions are not a cost-effective way to go; you
need the ability to blend the speed of DRAM access with the cost effectiveness of Flash/SSD (as
Aerospike does). Increasingly, cloud providers are moving to Flash/SSD-based systems to drive better
utilization and reduce power and cooling costs versus traditional HDD systems. They are a leading
indicator of where the future of compute architectures will look like for everybody in the next 18-24
months. You need a solution designed and optimized for modern computing architectures.

Master-based clustering, which means simple scaling and failover - Availability is a key ingredient for
most applications. It's a form of brand insurance, because anytime your infrastructure (of which your
database is a part) is unavailable, this impacts your brand perception. Whether this manifests as a
decline when swiping a credit card because the system cannot process a “rainy day” load, or as the
inability to provide suitable recommendations (and the resulting lost opportunity cost) - it comes down
to brand and perception. It's no longer simply getting an empty or system maintenance page when the
web site is unavailable - it's all about ensuring your audience remains engaged, regardless of whether
your infrastructure is having a rainy day or not. Master-based clustering and Paxos consensus algorithms
make up the core technical reasons why Aerospike provides near-instantaneous failover. Aerospike can
therefore sustain mixed read/write workloads with ease and with predictable throughput and latency,
even on rainy days. This not only satisfies your key availability requirements; it also significantly reduces
your overall TCO when compared to eventually consistent systems like Cassandra. As you have seen,
Aerospike has unmatched availability. And availability is a core attribute of your customers’ perception
of your services and offerings. This is no lab experiment - these are real-world examples of applications
handling the most demanding workloads, 24x7.

64 http://www.aerospike.com/blog/bluekai-flashssd-speed-at-scale/

http://www.aerospike.com/blog/bluekai-flashssd-speed-at-scale/

25 Five Signs You Have Outgrown Cassandra (and What to Do About It)

Simple Developer Experience (DX) - Developers have become the early adopters of technology, often
choosing a technology before the operations (or “DevOps”) team are aware of a new project. APIs have
to be natural, simple and current. You don’t want your vendor to be a laggard - which is why Aerospike
published its DX Manifesto in 2015. We support the languages and frameworks you need to build
efficient & flexible applications, cutting the time to market that your business is demanding, and
ensuring that you remain competitive.

Aerospike is the next-generation, enterprise-grade NoSQL solution. Aerospike has a fundamentally
unique architecture that has helped customers like BlueKai, Applovin, ShareThis, AdForm, InMobi,
PubMatic, NexTag and Curse cost-effectively convert significant applications from Cassandra to
Aerospike. Converting to Aerospike has allowed these organizations to achieve more predictable
performance, improve uptime and availability, and significantly decrease TCO.

Our recent YCSB benchmark goes into great detail on the performance gains of an Aerospike solution. If
you’re concerned about your Cassandra implementation, contact Aerospike at (+1) 408-462-AERO (408-
462-2376), or fill the form at http://www.aerospike.com/contact-us.

http://www.aerospike.com/blog/the-inglorious-dx/
http://www.aerospike.com/contact-us

Aerospike is the high-performance NoSQL database that delivers Speed at
Scale. Aerospike is purpose-built for the real-time transactional workloads
that support mission-critical applications. These workloads have the mandate
to deliver informed and immediate decisions for verticals like Financial
Services, AdTech, and eCommerce. The unique combination of speed, scale,
and reliability can deliver up to 10x performance or 1/10th the cost compared
to most other databases.

2440 W. El Camino Real, Suite 100
Mountain View, CA 94040

Tel: 408. 462. AERO (2376)
www.aerospike.com

© 2023 Aerospike, Inc. All rights reserved. Aerospike and the Aerospike
logo are trademarks or registered trademarks of Aerospike. All other names
and trademarks are for identification purposes and are the property of
their respective owners. (WP04-101317)

Appendix
Product Comparison
Please refer to the chart below for a summary of key product differences between Aerospike and
Cassandra: 65

65 Platforms support through Apache http://www.planetcassandra.org/cassandra/

http://www.planetcassandra.org/cassandra/

