

Query Aerospike real-time data at scale

using SQL

White Paper

Query real-time operational data at scale in Aerospike using SQL 1

Contents

Contents 1

Executive overview 2

Technology background 3

Federated databases and distributed SQL engines 3

SQL with NoSQL systems 4

Essential features 5

Accessing Aerospike data with SQL 6

Technology overview 7

Presto, Trino and Starburst SQL Engines 8

Aerospike SQL Powered by Starburst 8

Aerospike Connect for Presto-Trino 9

How Trino Works with Aerospike 10

Aerospike Connect for Spark and Spark SQL 13

Summary 17

About Aerospike 18

Query real-time operational data at scale in Aerospike using SQL 2

Executive overview

It’s easy to express but hard to achieve: give application programmers, data scientists, and
business analysts access to high volumes of real-time operational data using familiar SQL tools
without the high cost or high overhead. You’d want to enable them to integrate data easily from
disparate systems, including commercial and open-source offerings, relational and non-relational
platforms, and data sources deployed in the cloud or on-premises. Finally, you’d want to ensure
the infrastructure can scale up or down as needs change, provide fast performance for mixed
workloads, and keep operational costs low.

Aerospike is opening the world of real-time
operational data to SQL programmers and users of
popular SQL tools practically and cost-effectively.
Known for its ultra-fast performance and ability to
manage hundreds of gigabytes to petabytes of
transactional data on small server footprints,
Aerospike is empowering firms to analyze
operational data in-place using industry-standard
SQL. Doing so can cut infrastructure costs, speed
the training of artificial intelligence (AI) and
machine learning (ML) applications, and enable firms to act quickly as business climates change.

This paper explores how Aerospike delivers read/write SQL capabilities over its real-time
operational data platform via three products

• Aerospike SQL Powered by Starburst
• Aerospike Connect for Presto-Trino
• Aerospike Connect for Spark

You’ll learn how Aerospike’s solutions separate compute and storage needs, enabling each layer
to be scaled independently to avoid excess costs. You’ll understand how Aerospike makes it easy
to analyze operational data spanning systems of engagement at the edge and systems of record
at the core using SQL even though the underlying data is schemaless.

You’ll explore the unique features of Aerospike’s solution designed to deliver exceptional
performance on much smaller server footprints than other solutions. And you’ll understand how
Aerospike can be deployed to support popular SQL use cases, including interactive SQL queries
in custom applications, batch processing of data transformations. and business analytics with
tools from Tableau, Power BI, and others.

“Compared to the other solutions that we were
evaluating, [what] made Aerospike so attractive was
[that] its total cost of ownership, performance, and
scale were all superior compared to any of the
competitive offerings evaluated.”

Jason Yanowitz, EVP, CTO of Signal

Query real-time operational data at scale in Aerospike using SQL 3

Technology background

Providing timely, efficient, and easy SQL access to real-time data has challenged firms for years,
so it is helpful to understand current approaches to SQL operations over disparate data sources,
including real-time data management platforms.

Federated databases and distributed SQL engines

Relational DBMS researchers and commercial vendors delivered early implementations of
federated database technology decades ago. As shown in Fig. 1, these implementations typically
centered around a SQL-based database server that would accept application requests for data
residing in remote systems. Plus, these implementations would include an efficient plan for
accessing that data, instruct subordinate components (e.g., data source-specific software
connectors) to retrieve relevant portions of the data, integrate the interim result sets from
multiple data sources (if needed), and return the final results to the requesting application. In
addition, some implementations maintained metadata about underlying data sources for query
optimization, and some even accepted local storage of user data.

Figure 1: Federated database server architecture

The promise of using standard SQL to access physically distributed data appeals to many
enterprises because critical business data is spread across multiple systems. However, problems
with early federated relational database implementations soon emerged: performance was often

Query real-time operational data at scale in Aerospike using SQL 4

slow, scalability was poor, back-end data source support was limited, and platforms consumed
substantial resources and were costly to operate.

As data volumes increase and non-relational data sources proliferate, demand for distributed
SQL access to real-time data sources (including popular NoSQL systems) increase. Thus, the
need for massively parallel SQL engines with
high levels of scalability and lower costs.
Starburst has emerged as one of the leading
platforms for this purpose. Separation of
compute and storage layers with flexible
deployment options (on-premises or in the
cloud) are the basic requirements of any long-
term solution to this challenge.

SQL with NoSQL systems

SQL was developed to provide read/write access to tabular data structures managed by
relational DBMSs, and it remains the world’s most popular query language. Countless business
applications and commercial tools depend on it. Its adoption by the American National Standards
Institute (ANSI) and International Standards Organization (ISO) has contributed to application
portability and longevity.

While relational databases have enjoyed a golden age over the past three decades, the steady
increase in data volumes, new data types, new data models, and applications have made non-
relational systems essential and increasingly common.

However, enterprises often want SQL access, particularly for discovery, real-time analytics, and
reporting. Today, many NoSQL platforms support SQL through separate software components
that present a relational or tabular view of data modeled in file systems, key-value stores,
document stores, and so on. Typically, non-relational objects in the underlying data store are
mapped to a tabular schema so SQL-based applications can manipulate data using familiar
statements (e.g., SELECT). This mapping may be manual (requiring explicit instruction from a
programmer or an administrator) or automated (inferred by a software component). Next,
applications connect to a distributed SQL engine and issue SQL. Behind the scenes, the SQL
engine optimizes and decomposes the query into subtasks to be handled by one or more
underlying data source-specific connectors, which translate the operations into the native API of
the target back-end data store. After completing its work, the data store returns the results to
the connector, which feeds the data to the SQL engine to be integrated with interim results from
other connectors, if needed. The final result is returned to the SQL client application.

As you might imagine, performance is influenced by the capabilities of the SQL query engine and
the back-end store. If the SQL engine selects a poor data access strategy or the back-end store is

“Prior to Aerospike, we were running into challenges in terms of
the cost of scaling. We moved to Aerospike for its hybrid
memory architecture to leverage next-generation memory and
SSDs to their fullest advantage.”

 Sai Devabhaktuni, Sr Director of Engineering, PayPal

Query real-time operational data at scale in Aerospike using SQL 5

slow to process certain operations, the SQL client application can experience high data access
latencies.

Various use cases for SQL access to NoSQL data carry performance and data consistency
implications. For example, business analysts employing popular SQL-based business intelligence
dashboards may be less tolerant of slow responses than IT specialists running batch analytical
applications or initiating lengthy extract/transform/load (ETL) jobs. In addition, providing SQL
access to NoSQL systems broadens the breadth of corporate and public data that applications
can use to drive and refine critical business processes and decision-making.

Essential features

Enabling business analysts, data scientists, and application programmers to use SQL to access
disparate, physically distributed data is challenging. It requires a well-designed software
infrastructure to avoid performance problems, data availability issues, data inconsistencies, and
high operational costs. Functional considerations are also essential, including the breadth of
features and operations supported and the simplicity of deployment in the cloud, on-premises, or
hybrid environments.

Practical questions for data architects and IT leaders include:

● Use cases: What are your SQL use cases, and how would you prioritize each? Consider
the varying needs required by interactive ad hoc, complex, and batch queries and
exploratory data analytics. How does the platform address these needs?

● Scaling: How well can the solution scale up and down to suit changing business
requirements? To what extent can compute and storage layers be scaled separately, if
needed?

● Data sources: What data sources are supported? How much setup, monitoring, and
tuning are required at the SQL engine level and at each back end to achieve performance
and availability targets?

● SQL requirements: What SQL capabilities are supported? What popular SQL tools and
software libraries are supported? What SQL data types are supported? What specialized
NoSQL data types are supported, and how are these mapped to SQL types?

● Distributed processing: What features are provided to ensure strong runtime
performance? Consider both SQL query engine features and data source-specific
features. For example, to what extent does each support parallelism and efficient use of
machine resources?

● SQL optimization: Does the SQL engine employ cost-based query optimization and
create intelligent data access plans that push down as much query processing as possible
to the data source?

● Data source optimization: Can the data source feed statistical information to the query
engine? Does the data source use native indexes, connection pooling, and other features
to speed performance?

Query real-time operational data at scale in Aerospike using SQL 6

● Infrastructure: How does the infrastructure address data availability, data consistency,
and security concerns?

● Diagnostics: What diagnostic capabilities are offered?

Let’s explore how Aerospike, a leading NoSQL platform for managing real-time transactional
data, supports SQL access.

Accessing Aerospike data with SQL

If you’re new to Aerospike, it’s a distributed multi-model NoSQL platform that provides high-
speed predictable read/write access to billions of records in databases holding up to petabytes of
real-time operational data. Firms in finance, retail, telecommunications, technology, and other
industries use Aerospike to support systems of engagement and systems of record 24x7, often
saving $1 - $10 million per application compared with other approaches. How? Aerospike delivers
exceptional availability and runtime performance with dramatically smaller server footprints
through deep exploitation of modern hardware, including multi-core processors with non-uniform
memory access (NUMA), non-volatile memory extended (NVMe) Flash drives, persistent memory
(PMem), network application device queues (ADQ), and more. Other features that distinguish
Aerospike include its ability to automatically distribute data evenly across shared-nothing clusters,
dynamically rebalance workloads, intelligently route queries to appropriate nodes for fast
performance, and accommodate software upgrades and most cluster changes without downtime.

Aerospike can be deployed on-premises, in the cloud, or in hybrid environments. Firms
worldwide use it in production as a system of record at the core, a system of engagement at the
edge, and a global transactional system spanning multiple sites. Strong, immediate data
consistency, self-managing and self-healing features, and flexible data replication technologies
have helped drive Aerospike’s increased usage worldwide. Figure 2 illustrates several ways
Aerospike customers use its real-time data platform. For more details on Aerospike’s internal
design and key features, see Introducing Aerospike’s architecture.

https://aerospike.com/lp/introducing-aerospike-architecture/

Query real-time operational data at scale in Aerospike using SQL 7

Figure 2: Aerospike Real-time Data Platform architecture

Accessing Aerospike with SQL enables customers to eliminate the expense and effort of moving
Aerospike data to a separate SQL system for dashboarding, exploratory analytics, and other
common SQL use cases. Furthermore, firms that rely on SQL-based systems for real-time data
can now employ Aerospike as a back-end system, often cutting operational costs substantially
due to Aerospike’s comparatively small server footprint.

Let’s explore how Aerospike delivers its SQL support.

Technology overview

Through connectors to Trino (PrestoSQL) and Apache Spark, Aerospike offers firms the ability to
access one or multiple Aerospike clusters with ANSI SQL and integrate data from Aerospike with
non-Aerospike systems. Furthermore, Aerospike has optimized its Trino and Spark integration
for high performance, scalability, and functionality. As you’ll see, Aerospike combines its
massively parallel processing technology with the native parallel processing of these open source
technologies to speed performance and support high levels of scalability that other back-end
systems don’t provide. Furthermore, Aerospike’s connectors can push down filtering operations
to Aerospike; this minimizes costly data transfers.

Before we delve further into the capabilities of these connectors, it’s worth reviewing some
usage scenarios for Trino and Spark. Trino is well-suited to supporting interactive analysis
through ad hoc queries and popular business intelligence (BI) and reporting tools. Low data
access latencies are essential to speeding analytics and delivering fast “time-to-insight.”
Furthermore, many popular BI tools -- such as Tableau, MicroStrategy, Looker, Qlik, and others --
include JDBC drivers that can be used with Trino, so deployment is straightforward. On the

Query real-time operational data at scale in Aerospike using SQL 8

other hand, batch SQL queries, ETL jobs, and exploratory data analytics associated with AI / ML
applications often span massive data volumes. As a result, they require specialized libraries,
including many that Trino doesn’t support. Spark addresses such needs nicely and is often the
preferred choice of data scientists and data engineers.

Presto, Trino, and Starburst SQL Engines

Presto was developed at Facebook to enable its analysts to issue interactive SQL queries against
a multi-petabyte data warehouse stored in Apache Hadoop. Facebook released Presto as open-
source in 2013; later, the Presto Software Foundation forked the code base into PrestoSQL,
which was ultimately rebranded as Trino.

Key aspects of Trino include a wide range of available data source connectors, high levels of
scalability, separation of compute and storage layers, support for ANSI SQL, cost-based
optimization and other performance features, and deployment on-premises or in the cloud. For
the remainder of this paper, we’ll use Trino to denote both Trino and Presto solutions.

Aerospike has developed two products that leverage Trino: Aerospike SQL Powered by Starburst
and Aerospike Connect for Presto-Trino.

Aerospike SQL Powered by Starburst

Aerospike SQL Powered by Starburst – also referred to as Aerospike SQL - is an integrated
solution of Aerospike Connect for Presto-Trino and the Starburst Enterprise platform. Starburst
Enterprise is a commercial implementation of Trino that provides a fully tested, supported, and
hardened implementation of Trino. Aerospike Connect for Presto-Trino translates SQL queries
from Trino/Starburst enterprise SQL engines. A complete discussion of how Aerospike Connect
for Presto-Trino is included in the next section.

Figure 3: Aerospike SQL Powered by Starburst architecture

Query real-time operational data at scale in Aerospike using SQL 9

Aerospike SQL goes beyond the Aerospike Connect product in that it includes both Starburst
Enterprise and Aerospike Connect for Presto-Trino as part of the installation, operation, and
management of the environment. This provides the proven Starburst Enterprise SQL engine and
all the technologies needed to process SQL queries in your Aerospike Database clusters,
effectively adding ANSI SQL support to the Aerospike Real-time Data Platform.

Aerospike Connect for Presto-Trino

Aerospike Connect for Presto-Trino (sometimes called the Presto or Trino connector) enables
firms to use ANSI SQL to read (SELECT) from or write (INSERT) data into Aerospike via popular
BI tools and interactive queries, as shown in Fig. 4. Such workloads tend to be read-centric and
demand high-speed data access. Aerospike’s ultra-fast performance over high volumes of real-
time data ensures the back-end system won’t hinder SQL programmers and users of BI tools.

Figure 4: Using Trino with Aerospike

If you compare Figures 3 and 4, you will note that they are very similar. However, it is important
to note that Aerospike SQL installs both Aerospike Connect and Starburst Enterprise, whereas
Aerospike Connect is typically installed in existing Trino environments. In both cases, Aerospike
Connect for Presto-Trino is installed in the Trino cluster worker nodes and interacts with the
Trino coordinator.

Query real-time operational data at scale in Aerospike using SQL 10

Figure 5: Comparing Aerospike SQL and Aerospike Connect for Presto-Trino

How Trino Works with Aerospike

Let’s explore the architecture of Aerospike’s solution by walking through a simple query scenario
involving a single Aerospike cluster. Referring to Fig. 4, imagine that a client application (at left)
connects to the Trino/Starburst cluster and issues a SQL SELECT statement for data managed by
Aerospike. The Trino/Starburst coordinator parses the query and develops a query plan using the
Trino cost-based optimization (CBO) if configured to do so.

Unlike some data source connectors, Aerospike Connect provides Trino with statistics (row
counts for tables) to help Trino’s query engine intelligently determine an efficient query plan. The
Trino coordinator divides its query plan among Trino workers, each of which interfaces with
Aerospike. These Aerospike connectors
initiate data partition scans in parallel and
push down query predicates to the
Aerospike server. Figure 6 below
graphically details the process flow for
Aerospike SQL and Aerospile Connect for
Presto-Trino.

As a result, data retrieval is accelerated, and unnecessary data transfers are minimized. These
connectors also load data returned from Aerospike’s 4096 partitions into as many as ~2 billion
Trino splits for the Trino workers to process. Finally, the Trino/Starburst coordinator fetches
results from its workers and returns them to the client.

“Aerospike has done the unthinkable: they cut our
server footprint by a factor of 6 while boosting our
performance 300%. The resultant total cost of
ownership is saving us over $1 million a year.”

Guy Almog, Head of IT Engineering, Playtika

Query real-time operational data at scale in Aerospike using SQL 11

Figure 6: Process flow for Aerospike SQL/Aerospike Connect in the Trino/Starburst environment

Aerospike’s approach leverages massive parallelism at the back end (Aerospike Database) and
the Trino SQL engine layers. Users can scale each up or down independently to suit their needs.
For example, adding or removing Trino nodes will not cause Aerospike to rebalance its workload
or redistribute its data. The Aerospike server accommodates changes in its cluster without
operator intervention. Aerospike also manages the addition or removal of nodes without service
interruption and automatically rebalances data whenever a change in cluster status is detected.
Upgrades to one or more Aerospike nodes don’t require the cluster to be paused, nor any data
rendered unavailable. For production users, SQL or otherwise, such capabilities afford 99.999%
uptime and predictable real-time access to data.

Aerospike’s Trino connector can be deployed to access multiple Aerospike clusters in different
geographies or cloud regions if desired. In effect, applications can integrate data from multiple
Aerospike servers, joining and filtering the results as desired. This can be particularly useful for
federating queries across numerous edge-based systems.

A SQL application can read or write data to a globally distributed system of record managed by
Aerospike (as shown below in Fig. 7). This is because a single Aerospike cluster can be configured
to span multiple data centers or cloud regions with strong, immediate data consistency. The
Aerospike Trino connector can be deployed on-premises or in the cloud, in either Docker or
Kubernetes environments.

Query real-time operational data at scale in Aerospike using SQL 12

Figure 7: SQL access to a single Aerospike cluster that spans multiple sites (Conceptual view)

To simplify SQL access, Aerospike’s Trino connector uses heuristics to infer SQL schemas from
an Aerospike database, relieving SQL programmers from the burden of doing so. Optionally,
programmers can specify schemas for Aerospike data through JSON files. In either case, SQL
users perceive Aerospike data as residing in tables just as they would with any relational DBMS.
Furthermore, Aerospike also supports flexible schemas; this enables users to run SQL queries
against a set with a multi-type record.

Aerospike’s connector supports popular SQL data types and statements, including joins, range
queries, and popular aggregate functions. The connector even supports popular Aerospike data
types (maps, lists, and GeoJSON), mapping these to JSON for SQL programmers. Furthermore,
Aerospike can ingest serialized JSON data using Aerospike’s Document API; Trino users can then
run SQL queries against this data using Trino’s JSON functions and operators. Aerospike’s Trino
connector documentation provides further details on the connector’s capabilities and usage
examples.

For security, Aerospike recommends using transport layer security (TLS) for connection between
Trino and Aerospike clusters. For authentication, Aerospike supports public key infrastructure
(PKI), which enables central management of users, roles, and credentials. Alternatively, Aerospike
environments configured for TLS can employ the Lightweight Directory Access Protocol (LDAP)
for authentication. Finally, the Aerospike Connect for Presto-Trino supports audit trails for
compliance and security purposes. See the product documentation for further details on security
with the Trino connector.

https://medium.com/aerospike-developer-blog/aerospike-document-api-fd8870b4106c
https://docs.aerospike.com/docs/connect/access/presto/index.html
https://docs.aerospike.com/docs/connect/access/presto/index.html
https://docs.aerospike.com/docs/connect/access/presto/configuration-properties.html#properties-related-to-security

Query real-time operational data at scale in Aerospike using SQL 13

Aerospike Connect for Spark and Spark SQL

Apache Spark has emerged as a leading open-source platform for AI/ML, streaming, and other
applications. As shown in Fig. 8, Spark provides unified analytics for large-scale data processing.
In addition, it features the Spark SQL query engine that exploits high-scale parallel processing to
access disparate and distributed data sources, including popular NoSQL sources.

Figure 8: Major components of Apache Spark

Aerospike Connect for Spark enables programmers to use streaming and SQL APIs to read and
write real-time data managed by Aerospike clusters. Doing so enables AI/ML and analytical use
cases to leverage Aerospike in a Spark Streaming pipeline, integrate Aerospike data with other
data sources supported by Spark, and exploit historical and streaming data in real-time to
enhance business processes.

In many ways, Aerospike is an ideal storage choice for Spark due to its exceptional exploitation
of native hardware and relatively small server footprints. This is particularly significant given the
heavy memory and storage demands of AI/ML training workloads, many of which use Spark.
Indeed, as Fig. 9 indicates, one study estimated that AI training workloads could require 6x the
DRAM and 2x the SSDs of a standard cloud server, driving up costs considerably. Aerospike
helps firms minimize such costs. As a recent petabyte-scale benchmark demonstrated, Aerospike
delivers exceptional read/write performance on relatively small cloud clusters, cutting server
footprint up to 80% and overall costs by $1 - $10 million per application.

https://www.micron.com/insight/how-the-cloud-formed-and-where-its-heading
https://aerospike.com/lp/running-operational-workloads/

Query real-time operational data at scale in Aerospike using SQL 14

Figure 9: AI applications consume substantial memory and storage (Source: Nasdaq IR insights)

Indeed, many firms have discovered that Aerospike is a powerful platform for AI/ML
applications. Its architecture efficiently exploits the latest memory and storage technologies,
speeding heavy data preparation work during the AI/ML training phase and reducing overall
costs compared with traditional systems that don’t exploit SSDs to the extent that Aerospike
does. This is particularly important since training is a continual process rather than a one-time
event due to frequently changing trends and patterns reflected in the data. Furthermore, data
scientists often must experiment with hundreds or thousands of models before finalizing one for
production use; speeding such efforts can result in significant business impact. For example,
consider such time-critical use cases as fraud detection, risk analysis, etc. In addition, rapid
rollouts of new AI-driven capabilities can result in substantial cost savings and improvements in
customer service. Finally, Aerospike’s ability to deliver predictable, ultra-fast performance for
mixed workloads on small server footprints makes it an ideal platform for storing and managing
real-time data needed by AI/ML applications.

So how can firms pair Aerospike with Spark? Fig. 10 illustrates a simple usage scenario, with
Spark clients (at the bottom) connecting to Spark and accessing data from Aerospike that has
been loaded into the Spark cluster through the Aerospike connector. Using DataFrames and
DataSets (with Spark SQL) or Structured Spark Streaming APIs, programmers can interact with
one or more Aerospike clusters in a familiar manner. For example, Python users can leverage
PySpark to load Aerospike data into a DataFrame and then process the data with various open-
source Python libraries, including Pandas and NumPy; AI/ML frameworks, such as Scikit-learn,
PyTorch, TensorFlow, SparkML; and visualization libraries, such as Matplotlib.

https://media-www.micron.com/-/media/client/global/images/micron-insight/in-line-images/2019/cloud_info_2.jpg?la=en-sg&rev=ed38ad6917ca43199678068005ce1036&hash=21DBA2BF218838A839847C21FA5E6C89

Query real-time operational data at scale in Aerospike using SQL 15

Figure 10: Sample use of Aerospike’s Spark connector

Fig. 11 illustrates another usage scenario for Aerospike’s Spark connector, in which streaming
data (in this case, from Apache Kafka) can be processed and enriched through Spark’s Streaming
SQL API and ultimately written back to an Aerospike cluster. Aerospike’s cross-data center
replication (XDR) technology can feed data changes initiated by Aerospike client applications to
Kafka via Aerospike’s Kafka connector. It enables real-time business data collected by Aerospike
to be combined with streaming data from other sources in a closed-loop real-time process.

Figure 11: Combining Aerospike, Kafka, and Spark for real-time data processing

Query real-time operational data at scale in Aerospike using SQL 16

Like the Aerospike Trino connector, Aerospike Connect for Spark separates compute and storage
layers for cost-efficient scalability. Furthermore, Aerospike’s Spark solution employs predicate
filtering, a scan-by-partition strategy, and mapping Aerospike partitions to Spark partitions for
massive parallelization. In particular, users can employ up to 32K Spark partitions to read data
from an Aerospike namespace; each namespace can store up to 32 billion records across 4096
partitions on a minimal server footprint. As a result, applications that were once impractical or
too costly to implement are now feasible through the combination of Aerospike and Spark.
Indeed, one global firm found that deploying Aerospike and Spark led to a 10x reduction in time-
to-insight and helped the firm closed-loop pursue new business opportunities.

Aerospike Connect for Spark supports SQL INSERTs and SELECTs, schema inference, and
pushdown of query predicates, including Aerospike Expressions, to reduce the scope of data
scanned. Set indexes are also supported, enabling a Spark DataFrame to be mapped to an
Aerospike set to promote an efficient set scan rather than requiring a full namespace scan. This is
particularly useful for querying a small set of data in a large namespace, as recent performance
benchmark tests indicate. Furthermore, Aerospike enables administrators to set quotas to limit
Spark users so that no single Spark job consumes excess Aerospike resources. This prevents
long-running or I/O intensive Spark jobs from unduly impacting other high-priority work.

Aerospike’s Spark and Trino connectors can be deployed within the same data platform
infrastructure to expand the breadth of analytics available. For example, the Aerospike Spark
connector may be used to feed data from S3 or other cloud data sources to Aerospike in real-
time. Such data can then be analyzed with BI tools or interactive SQL queries using Aerospike’s
Trino connector. Aerospike’s low data access latencies and small server footprints frequently
make such deployments attractive compared to alternate solutions.

Aerospike Connect for Spark is deployed by adding the connector’s package to your application
environment and later submitting the application to the Spark cluster for execution in a highly
distributed manner. Users can deploy their Spark clusters on-premises or in the cloud, using
Docker or Kubernetes as desired. As with Aerospike Connect for Presto-Trino, Aerospike
Connect for Spark supports TLS, KPI, and LDAP for security. In addition, Aerospike’s
documentation provides further details on supported SQL statements and data types,
performance features, configuration options, and tutorials.

http://pages.aerospike.com/rs/229-XUE-318/images/Aerospike_Case_Study_Connect_for_Spark.pdf
https://aerospike.com/products/features/expressions-query/
https://aerospike.com/products/features/expressions-query/#set-indexes
https://aerospike.com/blog/set-index-performance/
https://aerospike.com/blog/set-index-performance/
https://docs.aerospike.com/docs/connect/processing/spark/index.html
https://docs.aerospike.com/docs/connect/processing/spark/index.html

Query real-time operational data at scale in Aerospike using SQL 17

Summary

Aerospike enables enterprises around the globe to query real-time operational data at scale using
industry-standard SQL in a practical and cost-efficient manner. Through Aerospike SQL
Aerospike Connect for Presto-Trino and Aerospike Connect for Spark, Aerospike empowers
firms to read and write data to one or more Aerospike clusters using ANSI SQL. Firms can even
combine this Aerospike data with data managed by popular commercial and open-source
relational DBMSs, NoSQL systems, and file systems.

Known for its ultra-fast performance and ability to manage hundreds of gigabytes to petabytes
of data on small server footprints, Aerospike is helping firms bring the world of real-time
operational data to SQL programmers and users of popular SQL dashboards. This speeds time to
insight, provides timely training (and retraining) of AI/ML applications, and enables firms to adapt
quickly to a changing business climate. Furthermore, through exceptional resource efficiency and
separation of compute and storage layers, Aerospike helps firms ensure that they can scale their
infrastructures as needed without incurring high costs. Indeed, Aerospike’s server footprints are
often a tiny fraction of what alternate solutions require; its production users usually save $1 -
$10 million per application as a result.

To learn more about Aerospike and its SQL support, contact sales@aerospike.com or visit the
Aerospike website at www.aerospike.com.

mailto:sales@aerospike.com
http://www.aerospike.com/

Query real-time operational data at scale in Aerospike using SQL 18

About Aerospike

The Aerospike Real-time Data Platform enables organizations to act instantly across billions of
transactions while reducing server footprint up to 80%. The Aerospike multi-cloud platform
powers real-time applications with predictable sub-millisecond performance up to petabyte-scale
with five-nines uptime with globally distributed, strongly consistent data. Applications built on
the Aerospike Real-time Data Platform fight fraud, provide recommendations that dramatically
increase shopping cart size, enable global digital payments, and deliver hyper-personalized user
experiences to tens of millions of customers. Customers such as Airtel, Experian, Nielsen, PayPal,
Snap, Wayfair and Yahoo rely on Aerospike as their data foundation for the future.

For more information, please visit www.aerospike.com.

http://www.aerospike.com/

	Contents
	Executive overview
	Technology background
	Federated databases and distributed SQL engines
	SQL with NoSQL systems
	Essential features

	Accessing Aerospike data with SQL
	Technology overview
	Presto, Trino, and Starburst SQL Engines
	Aerospike SQL Powered by Starburst
	Aerospike Connect for Presto-Trino
	How Trino Works with Aerospike
	Aerospike Connect for Spark and Spark SQL

	Summary
	About Aerospike

