
Rebuilding on a Strong Foundation:

from Cassandra to Aerospike, One

Year On

Jason Yanowitz

EVP, Chief Technology Officer

Signal Digital

2 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Introduction (2 min) We’re here

▪ Cassandra to Aerospike (10 min)

▪ The next generation of our data model (26 min)

Overview of talk

3 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Introduction (2 min)

▪ Cassandra to Aerospike (10 min) We’re here

▪ The next generation of our data model (26 min)

Overview of talk

4 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ We mutated most of our data. This makes Cassandra sad.

▪ Moved to async writes to ensure it wasn’t on the critical path for reads

▪ Couldn’t handle batch workloads

▪ Build moar and bigger rings

▪ Couldn’t maintain data quality and performance

▪ More nodes -> more gossip -> more overhead

▪ Reduce quorum requirements on reads for some use cases

▪ Found data was stochastically globally replicated

▪ Hire consultants. Run Repairs.

▪ Towards the end, we couldn’t even run repair successfully ($10k in data xfer/day!)

▪ Too many rings. So many $.

▪ Added a cache in front of it for some use cases

Cassandra failures and mitigations, a non-random sampling

5 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ There are three major components to prepare

▪ Changing our app

▪ Becoming operationally facile with Aerospike

▪ Migrating the data (Aerospike Client Services)

▪ Actual mechanics

▪ Snapshot Cassandra

▪ Run Cassandra -> Aerospike Tool (Juggernaut)

▪ Enter Dual write mode (catchup on buffered writes)

▪ Test, test, test

▪ Move read traffic to Aerospike, one region at a time

Executing the migration

6 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ What went well

▪ Advice from others

▪ Time to completion—from contract signed to live in production was ~100 days (~3
staff years of labor, including testing)

▪ Scope stayed largely stable

▪ Test datasets, test servers

▪ Paying Aerospike Client Services to do the throwaway work

▪ > 66% OpEx savings (servers, storage, data transfer)

▪ Areas for Improvement

▪ Focused on Juggernaut performance before correctness of migration logic

▪ Ran migration 2.5 times

▪ Testing after migration was hard

Main Takeaways from the Migration

7 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Introduction (2 min)

▪ Cassandra to Aerospike (10 min)

▪ The next generation of our data model (26 min) We’re here

Overview of talk

8 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ ~6 weeks, 3 engineers, 1 product person to ask:

“Can Signal systematically simplify its data model in 2019, given staffing,

product, financial and engineering constraints?”

▪ Answer: Yes!

▪ DB Learnings (YMMV!)

▪ AWS Neptune

▪ Neo4j

▪ Design learnings

▪ Event sourcing

▪ Logical Monotonicity via Conflict-Free Replicated Data Types (CRDTs)

Measure n Times, Cut Once (n > 1)

9 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Event Sourcing

▪ Model all data changes as events and persist them in an immutable log

▪ Solves

▪ Provenance questions

▪ Where did this data come from?

▪ Why does it look this way?

▪ How data changes over time

▪ Point-in-time recovery

▪ Does not solve the biggest headaches of distributed systems

▪ CAP theorem (Consistency, Availability, Partition-Tolerance) concerns

▪ At-least once messaging semantics

▪ Performance loss from coordination (if it’s even possible)

10 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ CALM: Consistency as Logical Monotonicity. Work by Hellerstein,

Alvaro et al

▪ Allows for deterministic outcomes on top of non-deterministic systems

“Does the program produce the outcome we expect despite any race

conditions that might arise?”— Hellerstein and Alvaro, 2019

▪ Models semantics of minimizing coordination in distributed systems

"In many cases, however, coordination is not a necessary evil, it is an

incidental requirement of a design decision.” — Hellerstein and Alvaro, 2019

Moving Towards Operational Sanity

11 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ In terms of expressiveness, if you can provide a total ordering for

events, logical monotonicity can solve all problems in PTIME!

▪ The CAP theorem was a negative result; an impossibility proof.

▪ CALM goes the other way and carves out the set of “which programs

can be consistently computed while remaining available under

partition.”

But will it blend?

12 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Relatively recent (~10 years ago)

▪ Data structures that meet three criteria*

▪ Associative (A ⨂ B) ⨂ C = A ⨂ (B ⨂ C)

▪ Commutative A ⨂ B = B ⨂ A

▪ Idempotent A ⨂ A = A

▪ Two distribution methods

▪ State-based

▪ Op-based

▪ As with any system that is CALM, these are Strongly Eventually
Consistent

▪ Strong in a mathematical sense

CRDTs – type of logical monotonicity

* Pedantry Disclaimer: There are other parts of the formal definition, but this is the important part for our purposes.

13 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Why CRDTs for us?

14 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Supports two operations

▪ Add(X)

▪ Present?(X)

▪ Add(1), Add(2), Present?(1) => true, Present?(3) => false, Add(1)

▪ Elements: {1,2}

▪ Is it a CRDT?

▪ Associative ({1} + {2}) + {3} = {1} + ({2} + {3}) = {1,2,3}

▪ Commutative {1} + {2} = {2} + {1} = {1,2}

▪ Idempotent {1} + {1} = {1}

But how to do this? An Easy Example: Grow Only Set

15 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

How to delete?

16 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Keep 2 Grow Only Sets

▪ [AddGrowOnlySet. DeleteGrowOnlySet]

▪ Add(x), Delete(x), Present?(x)

How to delete?

Adds: { }

Deletes: { }

17 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Keep 2 Grow Only Sets

▪ [AddGrowOnlySet. DeleteGrowOnlySet]

▪ Add(x), Delete(x), Present?(x)

▪ Add(1), Add(2)

How to delete?

Adds: { 1, 2 }

Deletes: { }

18 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Keep 2 Grow Only Sets

▪ [AddGrowOnlySet. DeleteGrowOnlySet]

▪ Add(x), Delete(x), Present?(x)

▪ Add(1), Add(2)

▪ Present?(2) # => true

How to delete?

Adds: { 1, 2 }

Deletes: { }

19 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Keep 2 Grow Only Sets

▪ [AddGrowOnlySet. DeleteGrowOnlySet]

▪ Add(x), Delete(x), Present?(x)

▪ Add(1), Add(2)

▪ Present?(2) # => true

▪ Delete(2)

How to delete?

Adds: { 1, 2 }

Deletes: { 2 }

20 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Keep 2 Grow Only Sets

▪ [AddGrowOnlySet. DeleteGrowOnlySet]

▪ Add(x), Delete(x), Present?(x)

▪ Add(1), Add(2)

▪ Present?(2) # => true

▪ Delete(2)

▪ Present?(2) # => false

How to delete?

Adds: { 1, 2 }

Deletes: { 2 }

21 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Keep 2 Grow Only Sets

▪ [AddGrowOnlySet. DeleteGrowOnlySet]

▪ Add(x), Delete(x), Present?(x)

▪ Add(1), Add(2)

▪ Present?(2) # => true

▪ Delete(2)

▪ Present?(2) # => false

▪ Add(2)

How to delete?

Adds: { 1, 2 }

Deletes: { 2 }

22 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Keep 2 Grow Only Sets

▪ [AddGrowOnlySet. DeleteGrowOnlySet]

▪ Add(x), Delete(x), Present?(x)

▪ Add(1), Add(2)

▪ Present?(2) # => true

▪ Delete(2)

▪ Present?(2) # => false

▪ Add(2)

▪ Present?(2) # => false

How to delete?

Adds: { 1, 2 }

Deletes: { 2 }

23 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ We haven’t captured causality, so values latch

▪ We need partial ordering (happens before relationship)

▪ Vector clocks would work but are a hassle

▪ We’re gonna cheat

What to do?

24 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ We haven’t captured causality, so values latch

▪ We need partial ordering (happens before)

▪ Vector clocks would work but are a hassle

▪ We’re gonna cheat

▪ Operations

▪ Add(X, time)

▪ Delete(X, time)

▪ Present?(X)

What to do?

25 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Keep 2 Grow Only Sets, together, they form a Last Write Wins (LWW)

Set

▪ [AddGrowOnlySet. DeleteGrowOnlySet]

▪ Add(x,time), Delete(x,time), Present?(x)

How to delete?

Adds: { } # this is now a Map

Deletes: { } # so is this

26 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Keep 2 Grow Only Sets, together, they form a Last Write Wins (LWW)

Set

▪ [AddGrowOnlySet. DeleteGrowOnlySet]

▪ Add(x,time), Delete(x,time), Present?(x)

▪ Add(1,103), Add(2,103)

▪ Present?(2) # => true

How to delete?

Adds: { 1: 103, 2: 103 }

Deletes: { }

27 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Keep 2 Grow Only Sets, together, they form a Last Write Wins (LWW)

Set

▪ [AddGrowOnlySet. DeleteGrowOnlySet]

▪ Add(x,time), Delete(x,time), Present?(x)

▪ Add(1,103), Add(2,103)

▪ Present?(2) # => true

▪ Add(1,100)

How to delete?

Adds: { 1: 103, 2: 103 }

Deletes: { }

28 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Keep 2 Grow Only Sets, together, they form a Last Write Wins (LWW)

Set

▪ [AddGrowOnlySet. DeleteGrowOnlySet]

▪ Add(x,time), Delete(x,time), Present?(x)

▪ Add(1,103), Add(2,103)

▪ Present?(2) # => true

▪ Delete(2,102)

How to delete?

Adds: { 1: 103, 2: 103 }

Deletes: { 2: 102 }

29 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Keep 2 Grow Only Sets, together, they form a Last Write Wins (LWW)

Set

▪ [AddGrowOnlySet. DeleteGrowOnlySet]

▪ Add(x,time), Delete(x,time), Present?(x)

▪ Add(1,103), Add(2,103)

▪ Present?(2) # => true

▪ Delete(2,102)

▪ Present?(2) # => true

How to delete?

Adds: { 1: 103, 2: 103 }

Deletes: { 2: 102 }

30 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Keep 2 Grow Only Sets, together, they form a Last Write Wins (LWW) Set

▪ [AddGrowOnlySet. DeleteGrowOnlySet]

▪ Add(x,time), Delete(x,time), Present?(x)

▪ Add(1,103), Add(2,103)

▪ Present?(2) # => true

▪ Delete(2,102)

▪ Present?(2) # => true

▪ Delete(2,104)

▪ Present?(2) # => false

How to delete?

Adds: { 1: 103, 2: 103 }

Deletes: { 2: 104 }

31 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ We can collapse the two sets into a single one

▪ GrowOnlySet of { element: (time, visible?) }

▪ Add(x,time), Delete(x,time), Present?(x)

▪ Add(1,103), Add(2,103)

▪ { 1: (103, true), 2: (103, true) }

▪ Present?(2) # => true

▪ Delete(2,104)

▪ { 1: (103, true), 2: (104, false) }

▪ Present?(2) # => false

I lied. A little.

32 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Using CALM design principles we can build a DGAF (Distributed

Graphs Are Fun) system

▪ What’s a graph?

▪ Vertices = LWWSet()

▪ Edges = LWWSet()

▪ Graph = [Vertexes, Edges]

▪ What’s a vertex?

▪ (id, data)

▪ What’s an edge?

▪ (vertexId0, vertexId1)

Back to our problem…

33 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Namespace: Vertices

▪ ids are a tuple (org, identifierType, identifierValue)

How to do this in Aerospike (v4)

Bins:

id: [org, idType, idVal]# same as PK for the record

34 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Namespace: Vertices

▪ ids are a tuple (org, identifierType, identifierValue)

▪ vtime is a specially crafted unsigned long

• First 63 bits are nanoseconds since epoch time, last bit is recordVisible?

How to do this in Aerospike (v4)

Bins:

id: [org, idType, idVal]# same as PK for the record

vtime: [vtime] # guess why this is a list

35 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Namespace: Vertices

▪ ids are a tuple (org, identifierType, identifierValue)

▪ vtime is a specially crafted unsigned long

• First 63 bits are nanoseconds since epoch time, last bit is recordVisible?

▪ edges are, conceptually, tuples: (vertexId0, vertexId1)

• This record is always vertexId0, so we only need to keep track of the other

vertexIds

How to do this in Aerospike (v4)

Bins:

id: [org, idType, idVal] # same as PK for the record

vtime: [vtime] # it’s actually a sorted list

edges: { otherVertexId: [vtime] } # LWWSet of otherVertexIds

36 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Namespace: Vertices

▪ ids are a tuple (org, identifierType, identifierValue)

▪ vtime is a specially crafted unsigned long

• First 63 bits are nanoseconds since epoch time, last bit is recordVisible?

▪ edges are, conceptually, tuples: (vertexId0, vertexId1)

• This record is always vertexId0, so we only need to keep track of the other
vertexIds

▪ eventIds help reconcile against the immutable event store.

How to do this in Aerospike (v4)

Bins:

id: [org, idType, idVal] # same as PK for the record

vtime: [vtime] # sorted list of length 1

edges: {otherVertexId: [vtime]} # LWWSet of otherVertexIds

eventIds: [’eventId1’…’eventIdN’]

37 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Let’s leverage Aerospike’s design for performing atomic updates on

records.

▪ This exploits one of the design strategies of CALM—push coordination

to the smallest possible bound.

▪ Obvious approach: use a UDF (Lua) that defines the necessary

business logic

▪ Clever approach: nested operations on Complex Data Types (CDTs).

▪ Keep vtimes as an ordered list of length 1 and trim to the largest value.

▪ Adding an edge is now adding to the ordered list and removing the lowest value

How to do a write

Bins:

id: [org, idType, idVal] # same as PK for the record

vtime: [vtime] # always trimmed to highest value

edges: {otherVertexId: [vtime]} # LWWSet of otherVertexIds

eventIds: [’eventId1’…’eventIdN’]

38 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ How do you ever purge everything from these sets?

▪ You define a “quiesce” time—the maximum amount of time you expect

it to take for a message to get processed

▪ I’d pick a reasonable multiple of your expected MTTR

▪ Let’s pick 3 days because it straddles a weekend and seems absurd.

▪ Now you need to find what needs to be GC’d

▪ Scan the db in place

▪ ETL the db and use a data warehouse

▪ Define a new event type for GC and emit them for every deleted item

that’s sufficiently old

▪ GC events apply iff vtime on the item in Aerospike matches vtime in the event you

emit

What about GC?

39 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ We’re in the midst of Phase 1 which will build out the main pieces of

the pipeline, stand it up in a “shadow” mode and provide immediate

business value for analytics

▪ Then we’ll roll through additional phases, each delivering incremental

business value and improving our facility with these abstractions and

new operational requirements.

▪ None of this could happen without having a much more stable data

plane (i.e., Aerospike) .

What’s next?

40 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Questions?

Comments.

Disagreements!

