<EROSPIKE- ol bduld-G:p2. - K —

SUMMIT ‘19

J 4w e T
1 3 - . o % +' A *]
' ‘. -
Y - W : - '
b e pa - . X 3
. - - + s » .
- f—_|
< - —
~ — :
- —
- = . + >
e
11
i

4
{ RS R 4 .ol
: i A
{

Key Data Modeling Technigues

oy
it

s"{ '
N

i
R 3
X ".".-':-’F‘Clkv 3

:.-: e
Land Fa) B e
'-.r ~) ey
vt - el et
e -k -
.."_ - ek 20)
S i L e o
- e il K -
- Sl L -
Lo - -
i o
: ot bod ——
-l o ot
b d B -
- -l ~

Piyush Gupta

- Director Customer Enablement
Aerospike

2

Aerospike is a "Record Centric", Distributed, NoSQL Database.

SPEED @ SCALE

o MILLIDNS OF
TRANSACTIONSPER SECORD

» STRONG CONSISTENCY

Y/,
OBJECT anaALynes/ Recorn

DATABASES sorEs | sToRes COLUMNAR DOCUME}

STORES ¢TORES

NosQL FAMILY ng*pH DBs

AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘

RELATIONAL
DATARASES

DATABASES

SUMMIT “19

<EROSPIKE

3

Relational Data Modeling — Table Centric Schema, 3rdNF

EMPLOYEE
ELD 'Name ddress

«— Many To Man/

View Table (Sved Query)

EID | Tramings
| 323 | AsID) 3/2%

— 322 Aslo2 |4/
ININGS ~
TID |DATE | CourseID
112 |3/2017| AS 101
[12 [4/2017| AS102
|
PRIMARY KEY

The World Accorclinjfa RDBNS'S!

EID |[TiD
— 323|012
4 521 (12
OneTo One 1323 (112]
—> SALARY -
Onefo Vhy EXD | $%)
323 | 120
JOB HISTORY T
JID | EID Row)
2 | 323 | JR-Emy
g 3Z3TD¢LE"5'S
7 223 Sv,fnjfr
{FotzewN KeY

AEROSPIKE SUMMIT 19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

<EROSPIKE ‘

SUMMIT “19

<EROSPIKE

4

NoSQL Modeling: Record Centric Data Model

= De-normalization implies duplication of data
= Queries required dictate Data Model
* No “Joins” across Tables (No View Table generation)

= Aggregation (Multiple Data Entry) vs Association (Single Data Entry)
= “Consists of’ vs “related to”

EMPIOYEE

EID| Name | Address | WngsDakk Map 3

25| PG xyz-l { Astol: 307, Asloz:apr...} |

S S— =

=» UIST ALL TRAININGS WHERE EID =323

EMPLOYEE_PIT TRAININGS

| Elo | $4% | ssw TID| DATE | Course | Parlicipanklist \

22l] 12 | 3/r7 [Asiol | [323 325, 371.]]
|

= wsT ALL PARTICIPANTS w0 HAVE TAKEN (OURSE=ASIO]

Query BaseD ModELING For NoSQL DBs.
AEROSPIKE SUMMIT 19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc ‘

<EROSPIKE

SUMMIT ‘19

Before jumping into modeling your data ...

What do you want to achieve? L justneed fur~ N 7 - .om

» Speed at Scale. ke Value ~ .~

= Need Consistency & Multi-Record Transactions? ookup 2 "o ﬁi‘/j

= Know your traffic. \Vef| Value & = DM'/)

= Know your data. Olfm I P EEU?! —
[Bt Model]

Model your data:

= Even a simple key-value lookup model can be optimized to significantly reduce TCO.
= Will you need secondary indexes?

= List your Queries upfront.

» Design de-normalized data model to address the queries.

Data Modeling is tightly coupled with reducing the Total Cost of Operations.

<EROSPIKE

5 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘
SUMMIT 19

A
m
Y
O
n
o
x
m

]

Aerospike Architecture Related
Decisions

r

L

L |

Proprietary & Confidential || © 2017 Aerospike Inc. All rights reserved.

7

Namespaces — Select one or more. [Data Storage Options]

= Storage: RAM- fastest, File storage slowest. SSDs: RAM like performance.

= ALL FLASH: TCO advantage for petabyte stores/small size records. Latency penalty.

I n$1u

mew-\&\/
IN DEX

UM

RAM

DATA

HYBRID MEMORY
MODEL

AEROSPIKE SUMMIT 19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

" 062”

TPRIMARY
| INDEX

—‘—

DATA,

Bo‘n-l\‘, IN

nnn

M

ALL RAM
MODE L

\ 1

'Ns3

PRIMARY
INDEYX

4
DATA

- J

BDTH:leN

ALL FLASH
MODE L

"nsg”
PRIMARY
\NDEX

J i
a
iRA/Y\

ooocp

=

HDD

DATAIBOTH)

<EROSPIKE ‘

SUMMIT ‘19

<EROSPIKE

Aerospike API Features for Data Modeling

API Features to exploit for Data Modeling:
= Write policy - GEN_EQUAL for Compare-and-Set (Read-Modify-Write).
= Write Policy flags: e.g. UPDATE_ONLY (don't create),

= Complex Data Types (CDT) — Maps and Lists — offer rich set of APIs.
= Map Write Flag: CREATE_ONLY (fail if MapKey exists).

= Operate() — update a record and read back in the same record lock.

= Other Features: Secondary Index Queries, Scans, Predicate Filtering.

8 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘
SUMMIT 19

<EROSPIKE

9

Maps & Lists

= Maps are items stored as key:value pairs, in key order.
= Value may be any scalar data type allowed in Aerospike, including lists and maps.

@ Hz:{gn:z,u:.ﬂ.}a} l

P~
\rm' upom:‘alf)
INDIVIDUAL
\-\ UJ

L> individual Key de

can be uPdafed

= APl access to nested Maps and Lists coming soon!
Limitations:

= Map's individual K:V pairs do not have a separate "time-to-live". TTL is always at
record level.

= UDFs have limited ability to modify Maps.

<EROSPIKE

AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘
SUMMIT 19

Maps: Terms & Nomenclature

Size of the map = number of Key:Value pairs in the map.
» {1:1,3:6,5:3,6:8,7:1}:Size=N=5

Index: Position of the key:value pair in the map.
= {1:1, 3:6, 5:3, 6:8, 7:1} :Pair 1:1 has index 0. Pair 3:6 has index 1.

Negative indexing (REVERSE_INDEX): Index of the last item in this is: -1, second last is -2

= {1:1, 3.6, 5:3, 6:8, 7:1} : Pair 6:8 has index 3 and is also index -2. Pair 7:1 has index 4 and is
also index -1.

Rank: Order of the value of the key:value pair items. [RANK 0 = Minimum Value, RANK -1 =
Maximum Value]

= Negative Indexing applies to Ranks too.

= {1:1, 3.6, 5:3, 6:8, 7:1} . Rank 2 = Value 3, pair 5:3, Rank 4 = Value 8, pair 6:8, which is also
Rank -1.

<EROSPIKE

SUMMIT 19

10 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘

Lists: Terms & Nomenclature

Size of the list = number of elements in the list.
= [1,4,6,1,3,8]:Size=N=6

Index: Position of the value in a list.
= [1,4,6, 1, 3, 8] : Value 1 has index 0. Value 6 has index 2.

Negative index (aka REVERSE_INDEX): Index of the last item.
= Lastitemis: -1, second last is -2

= [1,4,6,1, 3, 8] : Value 8 has index 5 & also index -1. Value 3 has index 4 & also index -2.

Rank: It is the Order by Value. [RANK 0 = Minimum Value, RANK -1 = Maximum Value]
= Negative Indexing applies to Ranks too.

= [1,4,6,1, 3, 8]: Rank 0 = Value 1, Rank 1 = Value 1, Rank 2 = Value 3, Rank 3 = Value 4,
Rank 4 = Value 6, Rank 5 = Value 8, which is also Rank -1.

= Lists may be ORDERED (by value) or UNORDERED (default). Lists may also be SORTED.
11 AEROSPIKE SUMMIT ‘19 I P i & Confidential | All righ d. © 2019 A ike |
roprietary ontiaentia rignts reservead. erospike Inc ‘ _

SUMMIT 19

Rich Set of Map APIs allow creative Data Models

» add(), add_items(), increment(), decrement()

= get orremove ... _by_key(), _by_index(), _by_rank()

= get or remove ... _by key_interval(), _by_index_range()

= get orremove ... _by_value_interval(), _by_rank_range(), _all_by_value()
= get orremove ... _all_by_key_list(), _all_by value_list()

= clear() - remove all items from the map

* size() - number of K:V pairs in the map

12 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘

SUMMIT ‘19

<EROSPIKE

List APIs

= append(), insert(), insert_items(), add_items()

= set() - to replace or set value at an index

= get or remove ... _by_index(), _by_index_range()
= get or remove ... _by rank(), _by_rank_range()

= get or remove ... _by_value(), _by_value_interval(), _all_by_value(),

_all_by value_list()
= increment(), sort()

= clear(), size()

13 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘

SUMMIT 19

<EROSPIKE

IAIdSOd3>

]

Modeling Tips and Tricks

L |

Proprietary & Confidential || © 2017 Aerospike Inc. All rights reserved.

14—

Composite keys

Composite key created with 2 pieces of related data, easily derived in
application.

= Breaks a long record into multiple records by using an attribute as part of the
primary key

Jim 20170701:[list of URLs visited], 20170702:[....], ...}

L
-

omposite Key by Day, into multiple records

Jim:20170701 [list of URLSs visited]
Jim:20170702 [list of URLSs visited]

= Helps with 8MB record size limit on SSD.

<EROSPIKE

SUMMIT “19

15 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <<EROSPIKE ‘

Using Composite Keys & Counting on the fly.

Problem:

= Count every time user-X sees Ad-Y.

= Provide list of all unique users who have seen Ad-Y.

Solution:

= Use composite key: user-X:Ad-Y with bin1=userid, bin2=AdID and bin3=count.

= \When user-X sees Ad-Y, enter userlD, adlD and increment count.
= Run Secondary Index query on AdID bin to return list of bin=userID.

<EROSPIKE

16 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘
SUMMIT 19

Using Hash - The Reverse Lookup Problem

Problem: Reverse lookup userlD by any userIDAttr i.e. given email, find
userlD.

useriDAttr

user235 {k1:v1, k2:v2 ...} ["'email:xyz", "phone:123",]

Create reverse lookup set using data-in-index with userIDAttr as Primary Key?
Or Secondary Index on user|DAttr LIST values?
Cons: RAM required for Primary Index or Secondary Index is exorbitant.

Pros: Maintains record level atomicity.

<EROSPIKE

17 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘
SUMMIT 19

Reverse Lookup — Sizing the RAM

= Consider 1 billion records, average 2 userlDALttr per user
= A) RAM for Data-in-index: 64*2*109/(10243) = 119GB

= B) Sl on userlDAttr LIST values - RAM estimate

= RAM for Sl = 28.44*1.5*[K + R] = 28.44 * 1.5 * [2,000,000,000 + 1,000,000,000]
/(1024%)= 119GB

lookupKey | userdIDAttrMap

Hash26LSBs {"email:xyz":user235, "phone:567":user566,}

Hash Based Reverse Lookup Records:

= Primary key = 26 bits of RIPEMD160 Hash of "email:xyz" values. (22° = ~67 million)

= Each map bin will have approx. 1000*2/67 = 30 key value pairs.

= P| RAM: 67,108,864*64/(1024%) = 4 GB (Significant - ~30x - RAM savings)

= Cons: Any record entry or update requires lookup table update also. (Multi-record update).

<EROSPIKE

18 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘ _

SUMMIT ‘19

Reverse Lookup - Managing Multi-Record Update

Update Sequence for avoiding hung pointers:
= 1 - Update Lookup Table entry of new or updated userlDAttr
= 2 - Update the userlD — data / userlIDAttr list record

= 3 - Update Lookup Table to delete stale userlDAttr entry (if applicable in case
user|DAttr was modified)

Benefit of using Lookup Table method

= Significant reduction in RAM usage.

= On AWS, i3 instances are 31:1 ratio, SSD to RAM.

= Adding more instances just for RAM gets very expensive.

= This technique can significantly reduce TCO.

= Alternate: Use ALL FLASH option (namespace selection).

19 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘

SUMMIT ‘19

<EROSPIKE

Using Hash - Modeling Tiny Objects
Problem:

= Our object size is very small, say 12 bytes of data — 64 bytes of Primary Index
per record is causing high RAM usage.

mm—

= \We have: "name1"”
s ki-vi “id2" “id2" "name?2” 2
n K2:v2 - ,

"id5" "id5" "nameb5” 5
= k3:v3

= where v1, v2 ...etc are very small size.

Primary Key

0x00000011 {"id1":{"id":"id1", "name":"name1","ver":13}, "id2":{...}, "id5":{..}

<EROSPIKE

20 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘
SUMMIT 19

Using Hash - Modeling Tiny Objects (cont.)

= Aggregate small objects as Key:Value Maps into larger objects
= Take RIPEMD160 Hash of (id1) - 20 bytes of digest.
= Bitwise AND to keep desired number of significant bits.

» For eg: Consider a 1 byte hash example (256 unique keys) :
= hash(id1) = 0x11010011

» hash(id2) = 0x10101011
* hash(id3) = 0x11010001 gy

Primary Key
» hash(id4) = 0x11110101 0000011 e
» hash(id5) = 0x11110011 X {"id1":{"d"."id1", "name":"name1","ver":1}, "id2":{...}, "id5":{..}

= 0x11010011 & 0x00000111 - 8 unique keys
= Keys id1, id2, id5 — end in same large record, whose Primary Key will be: 0x0000011

= Key=0x00000011 : Bin ={id1:v1, id2:v2, id5:v5} ... Use Aerospike Map Type
* |In the above limited example, we compressed 256 records into 8 records.

<EROSPIKE

21 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘
SUMMIT 19

Modeling Tiny Objects

Benefit:

= Significant reduction in RAM usage.
* Fewer Primary Index entries.
= Map Type storage is more compact.

= Can significantly reduce TCO.
Cons:
= XDR is no longer shipping individual records.

= TTL — Best if using "Live-for-Ever" — you loose per record TTL granularity.

Good solution for single entity very high read access pattern

22 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘

SUMMIT ‘19

<EROSPIKE

IAIdSOd3>

]

Multi-record Transactions

L |

Proprietary & Confidential || © 2017 Aerospike Inc. All rights reserved.

Multi-Record Transactions (MRTs)— Make Records Stateful!

Implemented at Application Level.

Aerospike locks one record at a time. MRTs not offered at server level.
Must deal with client failing in the middle of an MRT.

Many multi-record problems can be modeled using co-operative locking.
Must have a robust rollback scheme in case of failure.

Proposed scheme uses a UDF — recognize UDF performance limitations.
Alternate: Use expiration time & lock bin and poll. (Adaptive Map Example)

Use Strong Consistency Mode of Operation to address split-brain concerns.

Strong Consistency mode guarantee:

= Successful writes or updates are never lost.
* Reads can be configured to be never stale.
= No Dirty reads (Reading data that is not fully committed).

24 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘

<EROSPIKE

SUMMIT ‘19

Split Brain

= Split Brain for the purposes of our discussion is defined as a scenario where a cluster
splits into two or more separate clusters, each thinking it is the cluster.

= This happens rarely, but is a possibility.
= Take into consideration when modeling any transactions on distributed databases.

AR

Nz‘ N3 N4 \NB |
7 Dy

)N-N?)

— /\

NI-N5 : 5 fhode cduster »SPUTS {1 NS

(w-ns) i
SPL\T BRAIN SCERNARIO

25 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘
SUMMIT 19

<EROSPIKE

Split Brain in AP Mode — Not an issue in Strong Consistency Mode.
» Case 1: Master & Replica on same split, no inventory record on the other spilit.

=> Non-Availability

Cl-enr (valkd i’ﬁhs"d'w") Client (No Tvonsacl'ion)

Has Pavthtion

BUT
l ‘ | i ‘ I l | No Inventory
- Record 4

= Case 2: Master & Replica on split clusters can create valid over-bookings.

=» Inconsistency c.,,,,r (Vokid tramsaction) .o o Tiensaction)
/

P = = Has Pathition
l | | AND
‘—1r, | 'R’ inventory
Record

= OVER BOOKING

<EROSPIKE

|
SUMMIT 19

26 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Co-operative Locking for Multi-record Updates
= Implementing co-operative locking via 'inUse’ bin (flag or lock) and TransactionID.

= Allocate reasonable time X' for doing all updates.

= Use a RecordUDF to manage inUse bin. (Alternate, expiration with polling discussed

later.)

Detect hangs in RecordUDF:
* |F:inUse =1, AND if currTime - LUT > X' (else retry) return the "hung" Transaction ID and

list of pk1..etc.

* Rollback partially updated transaction records (pk1...etc) using hung TrID.
* Return to PK_lock record. If TrID is same, increment it and update the record. Return new

TrID and List of PKs.

» ELSE (normal case): If inUse = 0, set inUse=1, increment TransactionlD, update the record
and return list of PKs to modify and new TransactionlD.

= Assumption: Records listed in bin1 that participate in this transaction are exclusive to this
transaction. e.g. Self-sharding Adaptive Map.

PK_lock

inUse=10r0

TriD=344

bin1=[pk1, pk2, pk3,...]

27 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

<EROSPIKE ‘

<EROSPIKE

SUMMIT ‘19

28

Co-operative Locking for Multi-record Updates

Set inUse=1,
Increment

TrID inU5e=1

Return TriD
& PK List

Return
HUNG TrID
& PK List

inUse=1&
time-LUT>x

inUse=1 &

time-LUT<=x

Rollback
PK List

Increment TrID IF SAME,
Return TrID & PK List

PK lock |inUse=1o0r0 | TriD=344 | bin1=[pk1, pk2, pk3,...]
pk1 i Trid=204 | i bin1="abc" | f_TrID=304 | f _bin2="xyz"
pk2 i Trid=304 | i _bin1="def" | f TriD=344 | f bin2="vwx"

AEROSPIKE SUMMIT 19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

<EROSPIKE ‘

<EROSPIKE

SUMMIT ‘19

Co-operative Locking for Multi-record Updates

Implementing Rollbacks in transaction records (pk1 ... etc)

= Use a RecordUDF with hung TrID to update each transaction record.

= Each bin has initial state value and final state value.

= |nitial state and final state have associated transaction ids.

» Use hungTransaction ID (eg 344) to roll back partially updated records (pk1 ... etc)
» |f pk1 was successfully updated, f_TrID will be "344", otherwise "304"

= When rolling back, (if f_TrID = 344) move i_TrID and i_bin1 to f_TrID and f_bin1.

* Note: Do not execute new transaction till all previous hung transactions records
(pk1...etc) have been restored to initial state. (Avoid multiple sequential hangs error.)

* Normal Update: Move f_TrID and f_bin1 to i_TrID and i_bin1 and new value to
f_bin1 and f_TrID.

pk1 i_Trid=204 | i_bin1="abc" | f TrID=304 | f bin2="xyz"
29 AEROSPIKE SUMMIT 19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc ‘
SUMMIT ‘19

A
m
A
O
wn
o
A
m

]

Using Polling and Error Flags for
Locking Records — Alternate to
RecordUDF Approach

r

L

W
]

Proprietary & Confidential || © 2017 Aerospike Inc. All rights reserved.

30

Data Modeling for Bins with Varying Expiration — Polling Example
» Requirement: Build a User Profile Store with each Attribute having a TTL
associated with it

ISP User Profile Store

e

Juser D F topseavchItem | mostVisitedSite city
u42. laptop best bua. com jdn Jose

TTL= Lday TTL= Sdays TTL = Syavs

= User may have 10 to 100 attributes, each may have different TTL

31 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘

SUMMIT ‘19

<EROSPIKE

Data Modeling for Bins with Varying Expiration — Polling example

= Solution: [userID | Map{attr:value} | Map{attr:TTL}]

afvwWalue Map atir TTLMa

{‘I’ol,ﬁmckf'l'm: laptop {'I-oPSe.auh‘nem : 1d,
mostVisTied Sife : bestbuy:om, st Visifed Sic: 5d,
etty: Sandose & cty: 5y

TTL = future timestamp to expire attribute (i.e. 1d = future
timestamp value)

K-V sorted map policy on Map{attr:-TTL}
Map type allows updating any single key:value pair in a bin

Pros: Single record read/write operations
Cons:
= Must scan through all records to delete

= Periodically, use sorted Map API to find lowest TTL : expired bins =& Use scan UDF
timestamp = get by rank(attrTTL,0,VALUE) = Use client side logic on read to delete
1f timestamp < current_ time, expired attribute value and TTL (intra
key = get by rank(attrTTL, 0, KEY) scan deletes)
remove attrValue:key and attrTTL:key m Re%OSrd size limitation — 8MB (ver4.2+)
on SSD

<EROSPIKE

32 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘
SUMMIT 19

Adaptive Map — a Working Multi-Record Transaction Example

= Requirement: Build a self-sharding adaptive map storing key value pairs.
= Append only, no rollbacks needed.

» Multi-record data model using Co-operative Locking with Polling

{ cl:vl, c2:v2,¢c3:v3, e s B

» Aerospike Constraints: Single Record Level Locking, Max 8MB record size.

= Starts with Record:0 and automatically self shards and grows till namespace capacity.

= |f not sharded yet, Writes or Reads complete in single operation =» No performance penalty.
= After sharding, need two or more record operations for read, write or sharding.

= Cannot have stale reads or lost writes = Must use Strong Consistency Mode.

= Reach to your Aerospike Solution Architect if you have a use case for this source code.

<EROSPIKE

33 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘
SUMMIT 19

Adaptive Map — Data Structure

="
Reet”

COMPOSITE KEY —

ReC: ¢

DELETED

REC: 2

{lsLOCked yes, \d: TvID LXpIYeS: TS} J . %l[(‘)f 31 l{ K: VPA\RS}

LOCK BIN B\'TMAP DATA Luuuowmc:ﬂ
(ReC:0 ONLY) AFTER SPUIT

—

BITMAP (Stored only on REC:0) : 1 =» Record has split, 0 = Has Data if Root or Parent
34 AEROSPI(KE SUMMIT 19¥Pop etay&CofdetaI)I All rights reserved. © 2019 Aerospike Inc p ﬁ m

SUMMIT ‘19

Adaptive Map — Reading a MapKey Value.

4$T READ op
EAD REC: @
bA‘\'A & BITMATP
2ND READ 0P
;’ RBITMAPRIT® =4 ? READMAPKE)]
\ (16 DATA SHARDED?) [YES | @ REC:n
NO

G

= |[f REC:0 is sharded, BITMAP will read 1 in Bit 0. (Otherwise DATA has MapKey:Value.)
* Find the actual REC:n containing the data using the BITMAP.
» Read the MapKey in second read operation.

35 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘

SUMMIT ‘19

<EROSPIKE

Adaptive Map — Writing a MapKey Value.

= All sharded records

#5 INGLE TRANSACTION w/OPERATE

B‘BU‘ ’(ANV REC, START WI'TH REC! ;6)

‘ CREATE_ONLY

Ve

uniquely tied to root
record. [REC:0]. Once

N

WRITE Lock?| N0y LOKIT —» WRITE K2V, RETURN SIZE — UNLDG — DONE

REC:0 is sharded, Vves
leave it write locked. N \F S1ZE yTHRESHOLD
]Rec:¢|]REC!T\-(BEING-SPLIT)\ s> SPLIT THIS RECORD
i (L recursE
= Poll for TIMEOUT AP -
errors & abandoned | BTy —> HASH MAPKEY
lock, test for expiration RITG = g8 . V _
timestamp. (Alternative AT lﬁ@t@é@j@ﬁf_‘f‘” > T !

to UDF approach.)

l ERROR (ONDITIONS/TiMeuT aam;b

_’/-\/h — s e’

—| REC:3 ’—-— \
Zoee NG~ Lotk EXPIRED?
o [e - Lves
Rece DELETED = TAKE LOCK & spLIT RR'ﬂ
w2 (ABANDONED BY PREVIOUS CHENT)
LI ReCTe]— -
{1stockea:yes, 10 expresivs) (910 ‘;}‘,’, e ‘ﬂi,,l { K.V PAIRS)

LOCK BN BT‘I’/V\/:«Tf DATA LNULLON REC:0
(ReC:@ ONLY) AFTER SPUIT

36 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

[SPUIT
/ 'S RERD BITMAP

Q. TAKE REC:n LOCK
GET DATA & TTL

QPLIT DATA BY _, WRITE TWD

MAPKEY HASH NEW RECORDS .
T
QUPDKW BITMAP—> DELETE RECN, N>Y I

| ETEEE

Using Error Flags for "locking".
» Key Idea: Set and Infer state of record (locked or not) using write error flags
such as MAPKEY CREATE_ONLY or BIN_TYPE (increment a string).

= Adaptive Map uses CREATE_ONLY feature of Map K:V insert operation to
check the lock or take and complete the write in the same Aerospike record
lock.

= |[f CREATE_ONLY fails, we know the lock is taken.
* Read the lock clientlD and expiration time.

= |[f expired, overwrite the expiration time and clientld and acquire the lock
OTHERWISE poll periodically (every 1 ms).

= Alternate FLAG used in other models: Key Type Error — increment an integer
bin, to lock the first record in a multi-record operation, write a string in this bin.
When done, re-write an integer.

37 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘

SUMMIT 19

<EROSPIKE

Record UDF Performance

= A given UDF module, on any given node after >128 concurrent invocations
will exhibit performance degradation.

= Arecord UDF attached to a scan will yield better performance than a invoking
a UDF to modify on each record from the client side.

= A simple record UDF may not perform better at scale than CAS using

generation especially if the collisions are infrequent and number of concurrent
calls to the UDF increases.

= |f possible, characterize performance for specific data model and cluster
iImplementation and decide best course.

SUMMIT 19

<EROSPIKE
38 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE _

aIAIdSOd3 >

]

Need Lowest Possible Latency?
Understand Transaction Flow ...

r

L

:

]

Proprietary & Confidential || © 2017 Aerospike Inc. All rights reserved.

39

Read Transaction Flow

= Read transactions that ~—vead-shart -
exchange msgs/data via the ~>|NIC R [-~{DEMARSHAL{TR-QUEUE | N para inmemory
fabric, or go to disk, or park in e
09 , OF P DUP-RES, o
a queue ... we see latency fead-dup-res REPLPING | —>{ READ LOCAL
impact, and in that order. [TRPENDING List] v/St | YES ¥ 1
tead-vep)-ping
€'P"g AR JRw HasH ACGUIRE
read-vestat \E 7 (et SPRIG LOCK
For low latency, consider: L cﬁgﬁ\(T md"‘ﬁ"fnmtn 0;«/
: Rx THRDS.
= Data-in-memory (namespace) S LSTORAGE
No Duplicate Resoluti @Sﬂfy |
<— MGJSPO@ ¥ "]{ 3PRIG LDCK
-

fault
(default) <—-\N\c Tx ggggsg,mgy— READ RESPONSE

= No Linearize Read (SC only)

<EROSPIKE
40 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE
SUMMIT 19

"read-page-cache" ON "device" Storage — helps HOTKEY READS

2o Lo te-blo ck- buffer (128 kB) flush-max-ms (looo)
commit—to-device

OPTIONS READ OPTIONS

it ||

| PAGE
O_DIRECTY| (NV ALIDATE CACI-l(E ((; O-PIRECTY
(ByPAsS) [IF PRESEN (4kiB) “} (BYPASS)

Disk. __

DIsk
0_DSYNCY] ONTRo
U (w/ Foglce cacHE) S -
FLUSH -thvu
~—FiLe or ,l//&/(PERSISTENT
DEVICE l/ = _ 1+ STORAGE

device: read-page-cache — uses O_DIRECT + O_DSYNC for writes only.
= Write transactions bypass linux page cache, immed. flush from disk controller cache to disk.
= Enables caching on reads only.

<EROSPIKE

41 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘
SUMMIT 19

Write Transaction Flow

T s
| | . | wile-stort) -
- Dgrlng migrations, —>{NIC Rx |—»{ DEMARSHAL ~>| TXN- QUEUE
t
writes always StGE® FE o0
Duplicate Resolve by ADD TO RWHASH | | M yay write \
default. (fabric) DUwPRORESs [1| cacie? fIE 5 oreRiond
W t | i t (— L =7 LNO ERROR OUT
= Writes also replicate witte -dup- res { Do BUPL.RESLN. | L_[" Rw HASH
L |F_REQD/ CONFIGD ?
to another node. myy "o E"T”f:':
(fabric) (wiile-mader 1| [WRITE MASTER | o Lo
: —— —| [[(tocAL wRiE) PENDING LIST
= Locally, writes l @M T, > ERROR
always write to RAM. FIRE 2 FORGET 2 | / @v\E—vesfé*t)
It is eventually . I j"“
flushed to disk. rieteplwile) | [WRTE repucasl [FReE ket
CIFRVE\J __./; iﬁif“ T&_’%t 1 ALLRPEND.TXI:;?.TO
T 'HREE FORGET' RIC Rx ¢ ¢ T N. SUEUE =]
 j<{orfe-vesponzer—ay | pst/er/fet
mal
<«{NI1C Tx |e—{S0CKET END BUF. || WRITE RESPONSE

' <EROSPIKE
42 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE

SUMMIT ‘19

Speeding up Write Transactions — "Fire and Forget"

= Writes in AP mode, offer "fire-and-forget" i.e. don't wait for confirmation of
replica writes. Is it a viable option for "hot-key" update data models?

= Configure namespace (all records): write-commit-level-override master OR per
record via write policy (safer). Java: commitLevel COMMIT_MASTER

YES
Fire-and-Forget: WRI\TE MAST)ER — _‘3 —
. : : LOCAL WRITE
= Sends Replica Write but does not wait (LoChL W Pf“%‘;‘,&,‘,j‘j[_
for Replica Write response. P »

. < FIRE & FORGET ? @
= Sends response to client. s
= Frees the rwHash.

: WRITE REPLICA FREE Rw REQUEST
= However, monitor RAM usage for FABRIC Tx bt || Aﬁ%ﬁﬁﬁ?‘%
queued up writes on fabric in the AR T N: SUEUE =
Socket Send Buffer. <{urife- vesponse | Aty
—{S0CKeT send BUF. ‘.4- WRITE RESPONSEJ

43 AEROSPIKE SUMMIT 19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc ‘ _

Write Transactions — "Fire and Forget"
Data Modeling question to answer:

= |f a write fails or has a TIMEQOUT, what does the data model demand? Retry?

= State of the record on the server is unknown.

= Depending on where the network or node failure happened, just the master, or, both master and

replica, or, none of them could have the write — we just don't know at the client side.

How are you handling TIMEOUT errors? If using increment() — how is TIMEOUT handled?
Does knowing that replication happened, help with the data model?

Can you use "Fire and Forget"? (You can if you don't care about TIMEOUT Errors!)

<EROSPIKE

SUMMIT ‘19

44 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘

Q&A?

45 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘
SUMMIT ‘19

<EROSPIKE

<EROSPIKE

<EROSPIKE

46 AEROSPIKE SUMMIT ‘19 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc <EROSPIKE ‘
SUMMIT ‘19

