
Key Data Modeling Techniques

Piyush Gupta
Director Customer Enablement
Aerospike

2 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Aerospike is a "Record Centric", Distributed, NoSQL Database.

3 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Relational Data Modeling – Table Centric Schema, 3rdNF

4 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

NoSQL Modeling: Record Centric Data Model
§ De-normalization implies duplication of data

§ Queries required dictate Data Model
§ No “Joins” across Tables (No View Table generation)

§ Aggregation (Multiple Data Entry) vs Association (Single Data Entry)
§ “Consists of” vs “related to”

5 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

What do you want to achieve?
§ Speed at Scale.
§ Need Consistency & Multi-Record Transactions?
§ Know your traffic.
§ Know your data.

Model your data:
§ Even a simple key-value lookup model can be optimized to significantly reduce TCO.
§ Will you need secondary indexes?
§ List your Queries upfront.
§ Design de-normalized data model to address the queries.

Data Modeling is tightly coupled with reducing the Total Cost of Operations.

Before jumping into modeling your data ...

6Proprietary & Confidential || © 2017 Aerospike Inc. All rights reserved. []

Aerospike Architecture Related
Decisions

7 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Namespaces – Select one or more. [Data Storage Options]
§ Storage: RAM– fastest, File storage slowest. SSDs: RAM like performance.
§ ALL FLASH: TCO advantage for petabyte stores/small size records. Latency penalty.

8 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Aerospike API Features for Data Modeling

API Features to exploit for Data Modeling:

§ Write policy - GEN_EQUAL for Compare-and-Set (Read-Modify-Write).

§ Write Policy flags: e.g. UPDATE_ONLY (don't create),

§ Complex Data Types (CDT) – Maps and Lists – offer rich set of APIs.

§ Map Write Flag: CREATE_ONLY (fail if MapKey exists).

§ Operate() – update a record and read back in the same record lock.

§ Other Features: Secondary Index Queries, Scans, Predicate Filtering.

9 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Maps & Lists
§ Maps are items stored as key:value pairs, in key order.
§ Value may be any scalar data type allowed in Aerospike, including lists and maps.

§ API access to nested Maps and Lists coming soon!
Limitations:
§ Map's individual K:V pairs do not have a separate "time-to-live". TTL is always at

record level.
§ UDFs have limited ability to modify Maps.

10 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Maps: Terms & Nomenclature
Size of the map = number of Key:Value pairs in the map.
§ {1:1, 3:6, 5:3, 6:8, 7:1} : Size = N = 5

Index: Position of the key:value pair in the map.
§ {1:1, 3:6, 5:3, 6:8, 7:1} :Pair 1:1 has index 0. Pair 3:6 has index 1.

Negative indexing (REVERSE_INDEX): Index of the last item in this is: -1, second last is -2
§ {1:1, 3:6, 5:3, 6:8, 7:1} : Pair 6:8 has index 3 and is also index -2. Pair 7:1 has index 4 and is

also index -1.

Rank: Order of the value of the key:value pair items. [RANK 0 = Minimum Value, RANK -1 =
Maximum Value]

§ Negative Indexing applies to Ranks too.
§ {1:1, 3:6, 5:3, 6:8, 7:1} : Rank 2 = Value 3, pair 5:3, Rank 4 = Value 8, pair 6:8, which is also

Rank -1.

11 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Lists: Terms & Nomenclature
Size of the list = number of elements in the list.
§ [1, 4, 6, 1, 3, 8] : Size = N = 6

Index: Position of the value in a list.
§ [1, 4, 6, 1, 3, 8] : Value 1 has index 0. Value 6 has index 2.

Negative index (aka REVERSE_INDEX): Index of the last item.
§ Last item is: -1, second last is -2

§ [1, 4, 6, 1, 3, 8] : Value 8 has index 5 & also index -1. Value 3 has index 4 & also index -2.

Rank: It is the Order by Value. [RANK 0 = Minimum Value, RANK -1 = Maximum Value]
§ Negative Indexing applies to Ranks too.

§ [1, 4, 6, 1, 3, 8] : Rank 0 = Value 1, Rank 1 = Value 1, Rank 2 = Value 3, Rank 3 = Value 4,
Rank 4 = Value 6, Rank 5 = Value 8, which is also Rank -1.

§ Lists may be ORDERED (by value) or UNORDERED (default). Lists may also be SORTED.

12 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Rich Set of Map APIs allow creative Data Models
§ add(), add_items(), increment(), decrement()

§ get or remove ... _by_key(), _by_index(), _by_rank()

§ get or remove ... _by_key_interval(), _by_index_range()

§ get or remove ... _by_value_interval(), _by_rank_range(), _all_by_value()

§ get or remove ... _all_by_key_list(), _all_by_value_list()

§ clear() - remove all items from the map

§ size() - number of K:V pairs in the map

13 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

List APIs
§ append(), insert(), insert_items(), add_items()

§ set() - to replace or set value at an index

§ get or remove ... _by_index(), _by_index_range()

§ get or remove ... _by_rank(), _by_rank_range()

§ get or remove ... _by_value(), _by_value_interval(), _all_by_value(),

_all_by_value_list()

§ increment(), sort()

§ clear(), size()

14Proprietary & Confidential || © 2017 Aerospike Inc. All rights reserved. []

Modeling Tips and Tricks

15 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Composite keys

Composite key created with 2 pieces of related data, easily derived in
application.
§ Breaks a long record into multiple records by using an attribute as part of the

primary key

§ Helps with 8MB record size limit on SSD.

16 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Using Composite Keys & Counting on the fly.
Problem:
§ Count every time user-X sees Ad-Y.
§ Provide list of all unique users who have seen Ad-Y.
Solution:
§ Use composite key: user-X:Ad-Y with bin1=userid, bin2=AdID and bin3=count.

§ When user-X sees Ad-Y, enter userID, adID and increment count.
§ Run Secondary Index query on AdID bin to return list of bin=userID.

17 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Using Hash - The Reverse Lookup Problem
Problem: Reverse lookup userID by any userIDAttr i.e. given email, find
userID.

■ Create reverse lookup set using data-in-index with userIDAttr as Primary Key?

■ Or Secondary Index on userIDAttr LIST values?

■ Cons: RAM required for Primary Index or Secondary Index is exorbitant.

■ Pros: Maintains record level atomicity.

18 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Reverse Lookup – Sizing the RAM
§ Consider 1 billion records, average 2 userIDAttr per user
§ A) RAM for Data-in-index: 64*2*109/(10243) = 119GB
§ B) SI on userIDAttr LIST values - RAM estimate
§ RAM for SI = 28.44*1.5*[K + R] = 28.44 * 1.5 * [2,000,000,000 + 1,000,000,000]

/(10243)= 119GB

Hash Based Reverse Lookup Records:
■ Primary key = 26 bits of RIPEMD160 Hash of "email:xyz" values. (226 = ~67 million)
■ Each map bin will have approx. 1000*2/67 = 30 key value pairs.
■ PI RAM: 67,108,864*64/(10243) = 4 GB (Significant - ~30x - RAM savings)
■ Cons: Any record entry or update requires lookup table update also. (Multi-record update).

19 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Reverse Lookup - Managing Multi-Record Update
Update Sequence for avoiding hung pointers:
§ 1 - Update Lookup Table entry of new or updated userIDAttr
§ 2 - Update the userID – data / userIDAttr list record
§ 3 - Update Lookup Table to delete stale userIDAttr entry (if applicable in case

userIDAttr was modified)

Benefit of using Lookup Table method
§ Significant reduction in RAM usage.
§ On AWS, i3 instances are 31:1 ratio, SSD to RAM.
§ Adding more instances just for RAM gets very expensive.
§ This technique can significantly reduce TCO.
§ Alternate: Use ALL FLASH option (namespace selection).

20 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Using Hash - Modeling Tiny Objects
Problem:
§ Our object size is very small, say 12 bytes of data – 64 bytes of Primary Index

per record is causing high RAM usage.

§ We have:
§ k1:v1
§ k2:v2
§ k3:v3
§ where v1, v2 ...etc are very small size.

21 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Using Hash - Modeling Tiny Objects (cont.)
§ Aggregate small objects as Key:Value Maps into larger objects

§ Take RIPEMD160 Hash of (id1) à 20 bytes of digest.
§ Bitwise AND to keep desired number of significant bits.
§ For eg: Consider a 1 byte hash example (256 unique keys) :

§ hash(id1) = 0x11010011
§ hash(id2) = 0x10101011
§ hash(id3) = 0x11010001
§ hash(id4) = 0x11110101
§ hash(id5) = 0x11110011

§ 0x11010011 & 0x00000111 à 8 unique keys
§ Keys id1, id2, id5 – end in same large record, whose Primary Key will be: 0x0000011

§ Key=0x00000011 : Bin = { id1:v1, id2:v2, id5:v5} ... Use Aerospike Map Type
§ In the above limited example, we compressed 256 records into 8 records.

22 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Modeling Tiny Objects
Benefit:
§ Significant reduction in RAM usage.

§ Fewer Primary Index entries.
§ Map Type storage is more compact.

§ Can significantly reduce TCO.

Cons:
§ XDR is no longer shipping individual records.
§ TTL – Best if using "Live-for-Ever" – you loose per record TTL granularity.

Good solution for single entity very high read access pattern

23Proprietary & Confidential || © 2017 Aerospike Inc. All rights reserved. []

Multi-record Transactions

24 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Multi-Record Transactions (MRTs)– Make Records Stateful!
§ Implemented at Application Level.
§ Aerospike locks one record at a time. MRTs not offered at server level.
§ Must deal with client failing in the middle of an MRT.
§ Many multi-record problems can be modeled using co-operative locking.
§ Must have a robust rollback scheme in case of failure.
§ Proposed scheme uses a UDF – recognize UDF performance limitations.
§ Alternate: Use expiration time & lock bin and poll. (Adaptive Map Example)

§ Use Strong Consistency Mode of Operation to address split-brain concerns.

§ Strong Consistency mode guarantee:
§ Successful writes or updates are never lost.
§ Reads can be configured to be never stale.
§ No Dirty reads (Reading data that is not fully committed).

25 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Split Brain
§ Split Brain for the purposes of our discussion is defined as a scenario where a cluster

splits into two or more separate clusters, each thinking it is the cluster.
§ This happens rarely, but is a possibility.
§ Take into consideration when modeling any transactions on distributed databases.

26 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Split Brain in AP Mode – Not an issue in Strong Consistency Mode.
§ Case 1: Master & Replica on same split, no inventory record on the other split.
è Non-Availability

§ Case 2: Master & Replica on split clusters can create valid over-bookings.
è Inconsistency

27 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Co-operative Locking for Multi-record Updates
§ Implementing co-operative locking via 'inUse' bin (flag or lock) and TransactionID.
§ Allocate reasonable time 'x' for doing all updates.
§ Use a RecordUDF to manage inUse bin. (Alternate, expiration with polling discussed

later.)
Detect hangs in RecordUDF:

§ IF: inUse = 1, AND if currTime - LUT > 'x' (else retry) return the "hung" Transaction ID and
list of pk1..etc.

§ Rollback partially updated transaction records (pk1...etc) using hung TrID.
§ Return to PK_lock record. If TrID is same, increment it and update the record. Return new

TrID and List of PKs.
§ ELSE (normal case): If inUse = 0, set inUse=1, increment TransactionID, update the record

and return list of PKs to modify and new TransactionID.
§ Assumption: Records listed in bin1 that participate in this transaction are exclusive to this

transaction. e.g. Self-sharding Adaptive Map.

28 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Co-operative Locking for Multi-record Updates

29 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Co-operative Locking for Multi-record Updates
Implementing Rollbacks in transaction records (pk1 ... etc)
§ Use a RecordUDF with hung TrID to update each transaction record.
§ Each bin has initial state value and final state value.
§ Initial state and final state have associated transaction ids.
§ Use hungTransaction ID (eg 344) to roll back partially updated records (pk1 ... etc)
§ If pk1 was successfully updated, f_TrID will be "344", otherwise "304"
§ When rolling back, (if f_TrID = 344) move i_TrID and i_bin1 to f_TrID and f_bin1.
§ Note: Do not execute new transaction till all previous hung transactions records

(pk1...etc) have been restored to initial state. (Avoid multiple sequential hangs error.)
§ Normal Update: Move f_TrID and f_bin1 to i_TrID and i_bin1 and new value to

f_bin1 and f_TrID.

30Proprietary & Confidential || © 2017 Aerospike Inc. All rights reserved. []

Using Polling and Error Flags for
Locking Records – Alternate to

RecordUDF Approach

31 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Data Modeling for Bins with Varying Expiration – Polling Example
§ Requirement: Build a User Profile Store with each Attribute having a TTL

associated with it

§ User may have 10 to 100 attributes, each may have different TTL

32 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Data Modeling for Bins with Varying Expiration – Polling example
§ Solution: [userID | Map{attr:value} | Map{attr:TTL}]

§ TTL = future timestamp to expire attribute (i.e. 1d è future
timestamp value)

§ K-V sorted map policy on Map{attr:TTL}
§ Map type allows updating any single key:value pair in a bin
§ Periodically, use sorted Map API to find lowest TTL :

timestamp = get_by_rank(attrTTL,0,VALUE)
if timestamp < current_time,
key = get_by_rank(attrTTL, 0, KEY)
remove attrValue:key and attrTTL:key

Pros: Single record read/write operations
Cons:
§ Must scan through all records to delete

expired bins è Use scan UDF
§ Use client side logic on read to delete

expired attribute value and TTL (intra
scan deletes)

§ Record size limitation – 8MB (ver4.2+)
on SSD

33 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Adaptive Map – a Working Multi-Record Transaction Example
§ Requirement: Build a self-sharding adaptive map storing key value pairs.
§ Append only, no rollbacks needed.

Ø Multi-record data model using Co-operative Locking with Polling

§ Aerospike Constraints: Single Record Level Locking, Max 8MB record size.
§ Starts with Record:0 and automatically self shards and grows till namespace capacity.
§ If not sharded yet, Writes or Reads complete in single operation è No performance penalty.
§ After sharding, need two or more record operations for read, write or sharding.
§ Cannot have stale reads or lost writes è Must use Strong Consistency Mode.
§ Reach to your Aerospike Solution Architect if you have a use case for this source code.

34 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Adaptive Map – Data Structure

BITMAP (Stored only on REC:0) : 1 è Record has split, 0 è Has Data if Root or Parent has Split.

35 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Adaptive Map – Reading a MapKey Value.

§ If REC:0 is sharded, BITMAP will read 1 in Bit 0. (Otherwise DATA has MapKey:Value.)
§ Find the actual REC:n containing the data using the BITMAP.
§ Read the MapKey in second read operation.

36 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Adaptive Map – Writing a MapKey Value.
§ All sharded records

uniquely tied to root
record. [REC:0]. Once
REC:0 is sharded,
leave it write locked.

§ Poll for TIMEOUT
errors & abandoned
lock, test for expiration
timestamp. (Alternative
to UDF approach.)

37 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Using Error Flags for "locking".
§ Key Idea: Set and Infer state of record (locked or not) using write error flags

such as MAPKEY CREATE_ONLY or BIN_TYPE (increment a string).

§ Adaptive Map uses CREATE_ONLY feature of Map K:V insert operation to
check the lock or take and complete the write in the same Aerospike record
lock.

§ If CREATE_ONLY fails, we know the lock is taken.
§ Read the lock clientID and expiration time.
§ If expired, overwrite the expiration time and clientId and acquire the lock

OTHERWISE poll periodically (every 1 ms).

§ Alternate FLAG used in other models: Key Type Error – increment an integer
bin, to lock the first record in a multi-record operation, write a string in this bin.
When done, re-write an integer.

38 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Record UDF Performance

§ A given UDF module, on any given node after >128 concurrent invocations
will exhibit performance degradation.

§ A record UDF attached to a scan will yield better performance than a invoking
a UDF to modify on each record from the client side.

§ A simple record UDF may not perform better at scale than CAS using
generation especially if the collisions are infrequent and number of concurrent
calls to the UDF increases.

§ If possible, characterize performance for specific data model and cluster
implementation and decide best course.

39Proprietary & Confidential || © 2017 Aerospike Inc. All rights reserved. []

Need Lowest Possible Latency?
Understand Transaction Flow ...

40 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Read Transaction Flow

§ Read transactions that
exchange msgs/data via the
fabric, or go to disk, or park in
a queue ... we see latency
impact, and in that order.

For low latency, consider:
§ Data-in-memory (namespace)
§ No Duplicate Resolution

(default)
§ No Linearize Read (SC only)

41 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

"read-page-cache" ON "device" Storage – helps HOTKEY READS

device: read-page-cache – uses O_DIRECT + O_DSYNC for writes only.
§ Write transactions bypass linux page cache, immed. flush from disk controller cache to disk.
§ Enables caching on reads only.

42 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Write Transaction Flow

§ During migrations,
writes always
Duplicate Resolve by
default. (fabric)

§ Writes also replicate
to another node.
(fabric)

§ Locally, writes
always write to RAM.
It is eventually
flushed to disk.

43 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Speeding up Write Transactions – "Fire and Forget"
§ Writes in AP mode, offer "fire-and-forget" i.e. don't wait for confirmation of

replica writes. Is it a viable option for "hot-key" update data models?
§ Configure namespace (all records): write-commit-level-override master OR per

record via write policy (safer). Java: commitLevel COMMIT_MASTER

Fire-and-Forget:
■ Sends Replica Write but does not wait

for Replica Write response.
■ Sends response to client.
■ Frees the rwHash.
■However, monitor RAM usage for

queued up writes on fabric in the
Socket Send Buffer.

44 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Write Transactions – "Fire and Forget"
Data Modeling question to answer:

§ If a write fails or has a TIMEOUT, what does the data model demand? Retry?

§ State of the record on the server is unknown.

§ Depending on where the network or node failure happened, just the master, or, both master and
replica, or, none of them could have the write – we just don't know at the client side.

How are you handling TIMEOUT errors? If using increment() – how is TIMEOUT handled?

Does knowing that replication happened, help with the data model?

Can you use "Fire and Forget"? (You can if you don't care about TIMEOUT Errors!)

45 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Q&A?

46 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

