
 

 
 
Feed Hungry ML Systems More Data, Faster & Efficiently 
Improving AI/ML Applications and Outcomes with a Modern Data Platform 
 

AI/ML systems have insatiable appetites for data. Machine learning models run 
better with more data, and the more iterations and the more training, tuning and 
validation you can do, the better your results. The challenges lie in data preparation 
(which is painful) and model creation and tuning as models are constantly evolving. 
Plus, you need an online system with streaming data and the need to make an 
inference in milliseconds. The problem is wanting to pull disparate signal data from 
sources from different countries and data centers in real-time. Sometimes the 
hardest part of AI/ML isn’t the AI/ML, “it’s the plumbing.” 

If you were to sum up the major challenges from the data science community, i.e. 
those responsible for creating and executing AI/ML models it would be: 

• Need to build the most sophisticated model in the shortest time 

• Training can go on for days/months 

• Data prep is very I/O intensive due to complex transformations required 

• As training goes on, people get unhappy 

 

 
The Aerospike Data Platform for AI/ML 

The Aerospike data platform is designed to ingest large amounts of data in real-time for parallel processing while connecting to 
compute platforms as well as notebooks and ML packages.   

 
Aerospike at its core is a multi-model NoSQL 
database that can load data into a Spark 
DataFrame in a massively parallel fashion. 
Once the data is in the Spark DataFrame, you 
can bring to bear any of the popular AI/ML 
libraries and Frameworks of your choice to 
create highly performant AI/ML models based 
on your use case. Furthermore, you can 
explore data in Aerospike using Jupyter or 
Apache Zeppelin notebooks. (As you may 
know, Spark has built in support for these.) 

The beauty about this architecture is that it 
separates compute (Spark) and storage 
(Aerospike) so that you can right-size them 
independently to achieve lower TCO.  And last 
but not least, you can deploy it anywhere 
with Kubernetes and Docker. 

Figure 1: Aerospike Connect for AI/ML 

The Aerospike Difference  
for AI/ML 

• Reduce time to execute Spark 
Jobs by leveraging Massive 
Parallelism in Spark and 
Aerospike 

• Enables in-situ data exploration 
using SparkSQL and Presto 
eliminating compliance 
headaches by removing the need 
to copy data into multiple 
systems 

• Creates a low latency inference 
or online training pipeline using 
Aerospike Connect for Spark and 
Aerospike 5 
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Aerospike Storage Architecture Provides Choice 
Any storage architecture for AI/ML that you 
choose must satisfy low latency and high 
throughput reads and writes, while not blowing 
your budget at the same time.  Aerospike has a 
hybrid-memory architecture that is optimized 
for in-memory, SSD, hybrid and all-flash. This is 
what enables Aerospike to speed up an AI/ML 
pipeline from a storage standpoint.  

Aerospike works very closely with Hardware 
vendors such as HPE and Intel to make sure that 
we leverage their bleeding edge storage 
innovations. 

Aerospike gives you the choice to select the 
storage architecture that suits your design: 

• In-Memory – Storing both indexes and data 
in memory. While extremely fast, it tends 
to prove cost prohibitive at scale. 

• Persistent Memory (PMem) - By storing both indexes and data in PMem, the indexes can be retained in persistent memory 
when the system is powered down, so Aerospike can typically be restarted in a matter of seconds to enable non-disruptive 
maintenance. Also, downtime is reduced, software updates and security patches can be performed more frequently, and 
redundancy and replication requirements can be met more easily, resulting in significantly lower TCO. 

• Hybrid memory - Aerospike can store database indices in DRAM, and the data on SSD’s, irrespective of the amount of data on 
an individual node. Thus, the data density per node for Aerospike is significantly higher than with other databases, and 
Aerospike preserves performance, while minimizing the cluster size. 

• All-Flash – Similarly, you could choose All-flash for indexes and data which works well for a high number of objects (typically 
into the billions). 
 
 

Speeding up the Training Pipeline with Aerospike 
Aerospike can help accelerate a training pipeline significantly. In short, Aerospike can serve as a System of Record and rapidly load 
Spark DataFrames with massively parallelism. Per Figure 3 below, Aerospike can serve as a System of Record, with the ability to store 
100’s terabytes up to petabytes of data.  

Load the training data - This can be existing transactional and/or production data from your core system of record. Use Spark 
and the Aerospike Connect for Spark connector to load the data into Spark DataFrames in a massively parallel manner. (See 
subsequent section in this brief for more on parallelization.) 

Data Prep and Exploration – Data preparation involves running Spark jobs for cleansing, enriching, transformations and pre-
processing such as one-hot encoding, generalization, normalization, etc. Additionaly, third party data, can be also be added to 
production data. It is a very I/O intensive process.  

Data exploration is an important aspect of AI/ML pipeline. You must understand your data before you feed it to the AI/ML 
models (you can thus use Jupyter or Zeppelin notebooks to do so). 

Create an AI/ML Pipeline – You will need to make the enriched or transformed data available to your AI/ML Platform via the 
familiar Spark APIs. The trained model is then served to the intended AI/ML application. Any Spark DataFrame-to-ML package 
conversions will take place here, as well.  

Although not shown in this diagram, you could use Aerospike as a statestore for your AI/ML pipeline to store any state 
information. 

Figure 2: Aerospike Storage Architecture provides choice 
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Model training as part of this pipeline involves selecting a Deep Learning or Machine Learning algorithm and feeding it with 
data, so that it can learn the underlying patterns.  

Model Validation is to make sure that the model can predict accurately for data that was not a part of the training set.  

Parameter Tuning is an iterative process and requires a lot of tuning of model parameters a.k.a. parameter tuning. Once the 
model is ready it is served via a REST endpoint. 

 

  
 

 

Speeding up the Inference Pipeline 
Aerospike creates a very efficient, low latency inference pipeline with Aerospike. Aerospike can ingest data from disparate data 
sources into an edge system that is comprised of the Aerospike database using an Aerospike C client. (Clients for Go, Java, Scala, and 
other popular programming languages are available.) 

There are multiple benefits of having an Aerospike system at the edge:  

• Providing backpressure – Gaining the ability to slow down the ingest rate for millions of events per second so that the backend 
system that runs AI/ML or analytics workloads can catch up 

• Compliance – Gain the ability to explore data that is ingested into your system by running queries at the edge for example to 
comply with e.g. GDPR, etc.  

• Filtering – Filter-out only unnecessary data while preserving as much of the native dataset as possible 
• Span datacenters – Aerospike allows users to ingest high velocity, high volume at the edge with our multi-site clustering 

technology which allows multiple sites to behave as a single cluster.

Along with the Aerospike database, Kafka can be used as a streaming source for Spark. Data is prepped/pre-processed in Spark and 
posted to an inference server. An AI/ML application then persists the predictions for use in the training pipeline. 

Figure 3: Aerospike massive parallelism accelerates the AI/ML training pipeline 
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Per Figure 4, more specifically: 

Kafka ingests data from Aerospike – via change 
notifications and then serves as the Streaming 
source for Spark (given that Spark works on a pull 
model) 

Spark pulls event data from Kafka – as soon as 
they stream in thus avoiding any batching 

Data preparation – includes cleansing, 
transformation, enrichment for both batch, or in 
this case, streaming data, where data is converted 
to a form that AI/ML models can understand. 
Depending on the volume of data involved, this 
may need massive parallelization. It is an I/O 
intensive process and requires an I/O performant 
database such as Aerospike.  

Data Transmission via HTTP – whatever data you 
have prepped you send to the web server to 
invoke the model and execute the prediction. This 
is significant because ML models such as 
TensorFlow, for example, serve their models via a 
REST end point. Your Spark streaming 
application, after pre-processing the transaction 
would POST (HTTP) to the endpoint and the 
model would apply the ML model to the 
transaction. 

Model Serving – once you have built the model it 
can be placed in the web server. 

Inference Output – The model predicts (scoring) 
based on the input data stream or tensors. 
Inference can occur either at the edge or in the 
core system.  

Application receipt of Score/Output – The 
application could be a webapp, which is where 
results are received. Note that applications could 
be asking the model the questions which would 
send the inference label to the end user, for 
example.  

Persist the scores and write it to Aerospike – 
Aerospike uses cross-datacenter replication (XDR) 
to sync with the system of record for future training. 
To improve accuracy, a human such as a fraud 
analyst monitors the classification and manually 
labels them. Human intervention may not be 
required once the models perform consistently in 
production environment. 

 

 

‘ 

Figure 4: Aerospike Inference Pipeline 
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Case Study: Massive Parallelism with Aerospike and Spark 
A global Ad Tech customer was using Aerospike in conjunction with 
Spark and the Aerospike Connect for Spark pre-built integration for 
360-degree profile for each user that visited the customer's digital 
asset. 

In short, the customer experienced remarkable results, slashing the 
time it took their data science team to process Spark jobs from 12 
hours down to 2.4.  

Aerospike Connect for Spark has several features for achieving 
massive parallelism: 

• Scan by partitions – Aerospike stores data evenly across 4,096 
partitions that we can scan in parallel in Spark 

• Predicate pushdown  
• Partition mapping – Ability to map 4,096 Aerospike partitions 

against up to 32K Spark Partitions (which is configurable) for 
massively parallel reads.  

 

 
  

Massive Parallelization 

ü 80% reduction in Spark Job Execution time 
ü Reduced training time 
ü Increase frequency of retraining 
Operational reliability at extreme scale 
ü 13B Objects 
ü 150 TB unique data – multiple times a day 
Increased ROI 
ü Only 33 Aerospike servers 
ü Increased utilization of Spark Cluster (300 

nodes and 7,500 cores) 

“We were using custom code before which led to data quality issues 
and a complex data infrastructure. With Aerospike, we are processing 

Spark jobs that used to take 12 hours now in just 2.4.” 

Senior Director, Data Science and Engineering 
Top Global Ad Tech company 
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About Aerospike  
Aerospike is trusted by leading enterprises around the world to help them build and deploy modern data architecture solutions with confidence. The Aerospike enterprise-
grade non-relational database helps companies power mission critical, strategic operational applications that make digital transformation possible. Powered by a patented 
Hybrid Memory Architecture™ and autonomic cluster management, Aerospike is used by enterprises in the financial services, telecommunications, technology, retail, e-
commerce, adtech, and online gaming industries and is well-suited for fraud prevention, digital payments, recommendation engines, real-time bidding and other 
applications that require extreme uptime, performance and scale. Aerospike customers include Adobe, Airtel, FlipKart, Kayak, Nielsen, and Snap. The company is 
headquartered in Mountain View, Calif.  

                Ó2020 Aerospike, Inc. All rights reserved. Aerospike and the Aerospike logo are trademarks or registered trademarks of Aerospike. All other names and trademarks are for 
              identification purposes and are the property of their respective owners. 

2525 E Charleston Road, Mountain View, CA, 94043 | (408) 462-2376 | aerospike.com 

 
Case Study: Real-Time Processing of Trading Data with Aerospike 
Hewlett Packard Enterprise (HPE), an Aerospike strategic partner, deployed a High Frequency 
Trading solution with the Aerospike database, Aerospike Connect for Spark, and Aerospike 
Connect for Kafka pre-built integrations.  

Per the below figure from left to right: 

Live prices are streamed into the system through Kafka 
in JSON format  

The Kafka cluster acts as a streaming source for Spark 
Streaming 

Additionally, prices are streamed through the Kafka 
connect to an Aerospike instance that serves as a 
system of record. 

In Spark, prices are processed individually through the 
Decision Engine and depending on the ticker a decision 
to buy or sell is made  

 

To enable this decision process, current prices for each stock 
ticker are obtained from Aerospike. The decision engine 
uses Spark ML and other ML libraries with the following 
logic: 

• It checks whether the ticker price satisfies the condition 
to buy or sell.  

• Prices that do not satisfy the condition are simply 
ignored.  

• Prices that satisfy the condition (high-value prices) are 
notified via a real-time dashboard that was built using 
Prometheus and Grafana. 

These high value prices are persisted in Aerospike for future 
reference via Spark APIs that use the Spark Connector. 

 

“Aerospike is second to none for ingesting and persisting millions 
of events per second… (Aerospike) allows me to do near-instantaneous 

machine learning on the data as it lands.”  

Theresa Melvin Chief Architect of AI-Driven Big Data Solutions, HPE 
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