
Transforming Batch-based Data

Processing Pipeline with the

Power of Aerospike

Andrius Mažeiva

Head of Solutions Architecture

Adform

2 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Andrius Mažeiva

Head of Solutions Architecture in Adform

5 years ago joined Adform as Technical Product

Owner in Data Processing team. With a goal to lead

refactoring of existing processing flow to support

constant growth of data flows and ensure better

availability.

My story in Adform

3 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Founded in Denmark in 2002 by 3 code-writing entrepreneurs, Adform is the industry’s only

enterprise ready Integrated Advertising Platform built from the ground up as one integrated

advertising platform.

The company is still led by all three founders. Adform is one of the leading advertising technology

companies in the world. We provide the software used by buyers and sellers to automate digital

advertising. 850+ employees serve a high profile and loyal customer base globally.

Adform story –

Seventeen years of driving innovation in advertising technology

Gustav Mellentin

CEO & Co-founder

Jakob Bak

CTO & Co-founder

Stefan Juricic

CPO & Co-founder

4 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Ad Serving in Adform

▪ User visits web page

▪ Each placement in Web
Page performs a
request to Adform Ad
Server

▪ Ad Server decides
witch banner to show
and:

▪ Returns needed banner
scripts to web page

▪ Logs Impression
information to Kafka

▪ Scripts renders a
banner in a placement

5 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Each impression comes from

user identified by some ID

(Cookie ID)

Some questions to answer:

▪ Was impression unique?

▪ Was impression unique today?

▪ Was impression unique per

campaign?

▪ And etc.

So what to do with data?

Historical information about

each Cookie ID is needed to

answer such questions

How to store and access Cookie

profiles?

6 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Legacy processing data flow

7 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Definition of records:

▪ Cookie – record defined by Cookie ID to store general information about the cookie

like first seen time and last seen time

▪ Cookie Profile – record defined by Cookie ID and Tracking Setup Id to store

individual information about cookies activity for each client. Record contains actual

profile as binary field, first and last seen times

▪ Structure of tables:

▪ One table for Cookies

▪ Dynamic number of Cookie Profiles tables, were new tables are created in case

amount of records in existing tables exceeds defined limit

How the profile were stored in MS SQL server

8 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Rules

▪ In case new cookie appears its stored for 7 days

▪ If cookie is active for more than a day all cookie profiles are stored for 30 days

▪ Process

▪ Once a day scan Cookies and all Cookie Profile Tables to delete records witch are

not updated for 7/30 days based on the rules

Custom cookie profiles expiration logic

9 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Principle of batch processing

▪ Scan profiles tables to find all needed profiles and
delete the records (in transaction)

▪ Process the batch – modify the profiles

▪ Add modified profiles back to tables

Scanning by itself is costly operation so batches have to be big – each
batch contained half an hours data to achieve best performance results

Big batches results in statistics delay, unequal usage of instance
resources as if batch was processed faster server was “sleeping” and
waiting until new batch will be formed.

Maintenance windows were needed to perform various MS SQL
maintenance tasks (as Index rebuilds) and to maintain custom profile
expiration

Problems with legacy flow – MS SQL performance and Batch sizes

10 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Problems with legacy flow – Scaling

So lets add 2 additional servers:

▪ Full reshuffling of profiles between
instances is needed

▪ All data witch is already sent to
processing instances also needs to be
reshuffled

▪ With growing amount of servers its
hard to achieve equal load distribution
between servers without changing mod
function (impossible to evenly
distribute 100 CMODs to 7 servers)

Initial setup – 5 servers, each taking care
of 20 CMOD’s. Load grows with time,
amount of impressions, number of
profiles increases. Need for scale arises.

11 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

What if some instance goes

down?

▪ All flow stops until server is

restored 

▪ Its ok if it’s a temporary issue or

short term server maintenance is

needed, but what if serious

problems with server and it can’t be

restored?

Some portion of profiles can be

lost in worst case scenario 

Problems with legacy flow – Availability and single point of failure

12 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Solution – instead of local storage in each

instance lets use Aerospike cluster for

storing Cookie profiles

13 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Good news - minimal changes to old solution needed !!!

14 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Main benefits of new approach

▪ Possibility to change storage
without big refactoring of overall
flow

▪ Changing approach from
scanning to lookup by key
should allow to reduce batch
sizes drastically

▪ Scaling of storage and
processing instances becomes
independent processes

▪ No loss of the profiles data in
case one server outage

Why Aerospike?

▪ Adform already had experience

in AE usage - only positive

impressions from existing use

cases

▪ Aerospike feature set meets the

main needs for Profile storage:

▪ Really fast access of the data by

record key

▪ Dealing with profile expiration

comes out of the box

▪ Has needed scalability and

availability features

15 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ 4 nodes, each with 7 TB of SSDs, 756 GB of RAM, AE version 3.5.15

▪ One namespace with replication factor 2, two sets:

▪ One – for Cookie Profiles, where Key is defined as Cookie ID + ID of Tracking

Setup (individual profile for each client’s context). Profiles data stored in binary type

bin

▪ Second – for Cookies, where Key is defined as Cookies ID, for storing Cookie’s first

seen date, last seen date and references to all existing Cookie Profiles. References

to all existing Profiles were needed for calculating correct TTL’s for similar rules we

had in previous solution.

Decision was made to introduce additional REST API layer between

processing instances and AE to isolate processing from actual storage

technology

Design of the solution for Cookie Profiles Storage

16 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Redesigned processing data flow

17 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Migration of data was implemented as a step in processing flow:

▪ Before starting to process a batch, collect all Cookie Profiles from local

MS SQL database (delete data from MS SQL with transaction)

▪ Save all the profiles to AE via REST API

▪ Commit deletion transaction

▪ Perform batch processing by getting and storing Cookie Profiles to AE via

REST API

Plan for data migration

18 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Migration started, amount of data in AE started to grow, size of local

MS SQL databases started to reduce. After some time performance

stabilized, even with additional migration steps.

▪ All migration was intended to finish in 30 days as longest time for

storing Cookie profiles was 30 days.

▪ After ~2 weeks, suddenly all processing flow stopped… Aerospike

stopped accepting new records.

▪ After two hours investigation we found out a limit of max 256 GB of

RAM for primary index for one namespace was reached…

Migration

19 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Complication was ability to keep the flow stopped – the maximum

amount of time the flow can be stopped is 24 hours

▪ Rollback was not an option as putting data back to MS SQL server

would take too much time, not event taking into account all the

preparations needed

▪ The only option we found out was to extend AE cluster to keep

memory used by primary index bellow 256 GBs

▪ Good news – we managed to find and prepare additional AE nodes in

just few hours. As soon as first node was added to the cluster, AE

started to accept new records and all processing flow resumed.

▪ We kept adding new nodes to ensure memory used is not exceeding

256 GBs. And ended with 12 nodes in a cluster at the end of migration

Resolution

20 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

To enable efficient hardware utilization we decided to introduce sharding

inside AE:

▪ To use four namespaces instead of one to bypass record amount limitations for

namespace

▪ In addition to existing AE cluster, new one with 4 nodes, each with 7 TB

of SSDs, 756 GB of RAM, AE version 3.5.15 was created with modified

REST API layer witch was performing data sharding to 4 namespaces

based on Cookie ID

▪ Existing migration logic from MS SQL to AE was adjusted to perform

migration from one Aerospike to another.

▪ After one additional month of migrations we ended with perfectly

working solution on initially planned hardware

So, what’s next?

21 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ After migration was finished batch size was changed to 30 seconds

instead of 30 minutes

▪ Removal of huge Cookies and Cookie profile tables from local

database had significant impact on MS SQL Server performance. As a

result maximum throughput of individual processing instance

increased by ~3-4x.

Impact on performance

22 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Consult Aerospike support

while planning your new

Aerospike based solutions for

correct cluster sizing!!!

Lessons learned

23 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Ad Serving in Adform

▪ User visits web page

▪ Each placement in Web
Page performs a
request to Adform Ad
Server

▪ Ad Server decides
witch banner to show
and:

▪ Returns needed banner
scripts to web page

▪ Logs Impression
information to Kafka

▪ Scripts renders a
banner in a placement

▪ Scripts are continuously measuring if banner is In
Screen and sends viewability information based on
rules defined (up to 5 request to Ad Serving can
happen)

▪ On different user activities requests are sent to Ad
Serving to log events like Stop/Play video, mouse
over, extend banner and etc.

24 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ After processing each impression should have additional information:

▪ Was it viewable during next 10 minutes? For how long?

▪ Did any engaging event happened after impression was served?

Additional impression enrichment needed

Different streams needs to be joined with 10 minutes window by

applying custom join logic

25 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Processing data flow

26 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Joining for viewability requires only last
viewability information to be taken – makes
SQL query inefficient

▪ Raw events table is used for checking if
impression had at least one engaging event
and for moving events further for processing

▪ Separate processes for deleting data are needed – adding, joining data
and deleting conflicts between each other and can’t happen at same
time

▪ Constant adding and deleting data makes native SQL indexes very
inefficient – rebuild of indexes is needed at least once an hour

▪ If tables grows, everything slows down – hard to ensure stability of the
process

Problems with joining on SQL side

27 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Goal: Instead of joining data inside individual processing instances to

join the streams before routing

▪ As far as joining window is quite big (10 minutes) we need some

temporary storage to store viewability and events information – In

Memory Aerospike cluster perfectly fits here

▪ Separate processes for writing Events and Viewability to AE needs to

be introduced

▪ Current process responsible for routing data to individual processing

instances needs to be extended to lookup for Event and Viewability

information before routing

Possible solution

28 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

Redesigned processing data flow

29 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ 4 nodes, each with 512 GB of RAM for In Memory AE storage

▪ One In memory namespace, replication factor 2

▪ Flexible API layer

▪ enables to define new sets for separate use cases

▪ supports different update strategies on records and bins level: always update, keep

last by date, create if not exists

▪ Enables to define TTL for each set (Use Case)

▪ No limitation on record size as all data is kept In Memory

Design of the solution for stream joining

30 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ How to know if lookup from router can be performed?

▪ Are all viewably and events information already in AE?

▪ What if In Memory Aerospike cluster will loose more than 2 nodes at

the same time?

▪ How to avoid possible data losses?

Potential problems

31 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Introduce Separate independent process (Data Delays collector) witch

is:

▪ continuously checking the committed Kafka offsets

▪ extracts actual time of last already processed record

▪ Updates the time (data delay) in same In Memory Aerospike via API (Data Delays

API)

▪ As a result, router can check data delays of Events and Viewability

Information Feeder via API

▪ In case more then 1 AE node goes down, some of Data Delays are also

lost. Stream joining API was extended to continuously perform checks

of potential data losses. In case of missing data, API stops responding

to data requests to avoid data losses

Synchronization between processes

32 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Stream joining solution with small extensions is currently used for 5

different Use Cases including complex join for Sessions calculation

▪ Data delays API currently is used as a main source for stream

processing service health monitoring

What’s next?

33 A E R O S P I K E S U M M I T ‘ 1 9 | Proprietary & Confidential | All rights reserved. © 2019 Aerospike Inc

▪ Adding Aerospike to processing flow allowed to speed up

all the flow – average delay for data processing reduced

from 4 hours to 15 minutes (including 10 minutes delay

required by business rules)

▪ Aerospike enabled scalability for most critical paths

▪ By utilizing Aerospike overall costs of solution reduced

both from hardware perspective and operational

perspective

Conclusion

Questions?

