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Batch-oriented Platform
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Batch Ingestion
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We need streaming support
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Challenges

• Typical storage formats used in data platforms are not suitable for streaming

• Kafka historical storage does not fit the purpose as we do not simply need historical records. Records 

need to be “projected” to represent the current state

• A distributed database for the entire data platform would be too costly as we keep most of the historical 

records in S3 
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Partial Events

Source System
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{

fields:{ 

“phone_number”: “91147890”

},

op: “UPDATE”

pk: 3434833838 

}

{

fields:{ 

“home address”: “91 Kovan Road”

},

op: “UPDATE”

pk: 3434833838 

}
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Eventing + shadow database
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Database choice

Aerospike MongoDB Redis FDB

Fast key/value lookup ● ● ● ●

Open Source ● ● ● ●

Memory + flash storage ● ● ● ●

Shared-nothing architecture ● ● ● ●

Complex data structures ● ● ● ●

Secondary Indexes ● ● ● ●

Commercial Support ● ● ● ●

Based on the table above, we decided to adopt Aerospike as the database of choice for all services



|  9

With Real Time ingestion
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We needed a Global Model

Cards Source System Projector
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The same business entity is very different from source system to source system. We need an efficient way to 

“globalize” the model stored in the database.

Projector
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Projector

Introducing ”the Globalizer”

Source System
Global 

Customer 

Model

Every model gets translated into a Global model by a Globalizer component, which is fully 

configurable using a custom DSL. This way, domain developers can easily plug-in new source systems 

without requiring to write any code.

Globalizer
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Data Format

• De facto standard for streaming: Avro is the format of choice of Apache Kafka

• RPC Support: Avro can seamlessly be used for implementing RPC services

• Compact: it’s binary, thus it’s fast

• Evolutionary: its supports very well schema evolution
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Storing the data
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The Avro Record Format
How can we speed-up even further the responses? Just dump the AVRO payload into the database

{ 

"type" : "record", 

"namespace" : ”Customers", 

"name" : ”Customer", 

"fields" : [

{ "name" : ”CustomerId" , "type" : "string”, “pk”: true }, 

{ "name" : ”Country" , "type" : ”string”, “sk”: true } 

] 

}
Payload: a002ef10cc76eb21964abbf3489

CustomerId 366635326

Country SG

The Payload field is used to return the raw data to the client during an API call, while other fields are solely used for 

creating secondary indexes. This design was inspired by the Record Layer of FDB from Apple
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We still have APIs
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We still have challenges

• Eventual consistency sometimes is a problem:  applications are not designed based on 

eventual consistency principle. They expect after an action, data is updated immediately. That is 

not the case for an eventual consistent system.

• The batch nature of core systems sometimes require the cache to be completely refreshed: not 

always source systems can generate events in real time. Sometimes, after a batch operation, the 

cache needs to be refreshed in bulk
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Thank You


