
Rebuilding a Real-time Datastore: a
story of design, deployment and
performance

Paul Revere
SENIOR SOFTWARE ENGINEER

QUANTCAST

Kristi Tsukida
STAFF SOFTWARE ENGINEER

QUANTCAST

| 2

● We’re an online advertising platform attempting to simplify advertising on
the open internet

● We’re also an online measurement platform for publishers
● We also make products to help publishers comply with privacy regulation

Quantcast overview

| 3

Real Time Bidding (RTB)

TV, Radio, Newspaper Ads
Static ad targeted at
thousands/millions

Customized ad targeted at individual
user

| 4

Real Time Bidding (RTB)

With great targeting power comes
great engineering problems

● Scale
○ Huge request volume
○ Store data on as many internet users

as possible
○ Make updates to that data in real time

● Latency
○ Retrieve and evaluate that data as a

webpage is loading

Customized ad targeted at individual
user

| 5

RTB Latency

Ad Load time

Webpage load time

RTB Exchange Auction Time

Quantcast RTB Response Time

Quantcast Data Lookup Time 1 millisecond

<2 seconds

Network hop Network hopServer Lookup Latency

| 6

Our beloved villain

A legacy custom-built key-value store
system

Impressively kept the business running for
the last 8 years

Great Destroyer of New Product Ideas

Invokes Fear Of Change

| 7

The Heroes

This story has a lot of heroes

Couldn't have been done
without teamwork!

| 8

Spoiler alert: We win

On March 5th we shut off Keebler

| 9

Spoiler alert: We win

| 10

Migration Timeline

Legacy System

Use Case 1

Use Case 2

Use Case 3

Use Case 4

Use Case n

...
time ->

data validation &
performance tuning

scale down legacy system

POC

design &
implementation

Develop New Product

Develop New Product

| 11

Migration: Featurestore use case

Proof of Concept

● synthetic benchmark
● realtime & batched data loading
● no data validation

Productionization

● production integration
○ performance evaluation

● data validation

| 12

Aerospike Hacks: Mesh Seed Address

Using an AWS ELB-backed DNS entry for the Aerospike Mesh Seed Address

● Downside
○ A bit finicky when creating a new cluster

■ we don't create new clusters often
○ Technically not recommended by Aerospike Support

● Upside
○ Works great with Auto Scaling groups
○ Simpler operation: We don't have to have a separate script/service updating the

Aerospike configuration with ip addresses
○ Works with Aerospike client too

| 13

Aerospike Support

| 14

A couple space squeezing tricks

● Memory (index) space
○ Single set with multiple bins
○ Increase Memory High Water Mark
○ Allocate new namespaces based on Unallocated disk/memory

■ NOT based on the Unutilized disk/memory

● Disk space
○ Increase Disk High Water Mark
○ Increase defrag-lwm-pct

● Data layout
○ Single characters for bin names
○ Using lists instead of maps
○ Setting newer “epoch” to get smaller timestamp integers

| 15

AWS Issues

● Placement groups have not worked out for us
● Capacity issues
● Reservation juggling
● AWS sometimes puts many of our instances on the same physical

machine
○ When that machine dies, we lose multiple nodes at once

| 16

Disaster recovery

● Have a (tested) plan
○ You’ll end up using it

| 17

Client Performance Debugging

Client performance is just as important as Server performance.

| 18

Aerospike Client monitoring

AerospikeClient.getClusterStats()

● Cluster stats
○ # connections used
○ # connections in pool

● Event Loop stats
○ # commands in process
○ # commands in queue

| 19

Connection spikes

Client timeouts causes socket to close

-> Client needs to make new connections

times millions of requests per second

-> hit proto-fd-max limit on number of connections very quickly

● timeoutDelay
● socketTimeout
● totalTimeout

| 20

Async reads & Java Garbage Collection

High volume Async reads can cause large backlog on the EventLoop delay
queue

-> Can cause Java Garbage Collection issues

maybe also exacerbated by connection churn?

| 21

Non-Aerospike improvements
to the client's operating environment

improved the Aerospike client's
performance

| 22

Migration: Frequency Capping use case

| 23

What is Frequency Capping

● Use case: provide advertising clients controls on how often individual
users are shown ads

● To support this use case we need to store data about the ads shown for
each user

| 24

Initial designs… Which we threw away

● We investigated how the storage for this data was working
● We found it was using a custom storage structure inside keebler

○ List of key-value pairs on each record
○ Only data type was integers
○ No delete operation, set values to “0xFFFFFFFFFFFFFFFF” instead
○ Strange update semantics

● We came up with a design to recreate it in Aerospike
● But we decided to throw out the design
● Back to the drawing board...

| 25

With a clean slate we made something better

● We understood the use case for our customers
● We decided build a better solution

○ Came up with a clean interface and simple data layout
○ Left room to develop future functionality

● Established a correctness metric to evaluate the new system
● Rolled out in stages, validated it, and fixed issues until it was rolled out

globally

| 26

Key takeaways from the Frequency Capping migration

● If you deeply understand the use cases during a migration you’ll have a
chance to make a better solution in the process

● Being able to run two systems in parallel, measure them with objective
metrics, and experiment on them was critical for the success of this
migration

| 27

Other things we’ve done: Supporting new use
cases

● We have already launched new products, with customer adoption, relying
on new datasets stored in Aerospike

● We have improved the quality of data provided to batch processing use
cases

● We’re fielding a good number of requests for development of new
datasets

| 28

Other things we’ve done: Move to cheaper, more
efficient instances

1. We’ve moved to the i3en instance class in AWS
2. We’re seeing good performance and they’re way cheaper

| 29

The Journey

● The keebler dragon has been slain
○ We’ve won riches and feature velocity
○ Living happily ever after in operational stability?
○ Everlasting fame at Aerospike Summit?

● What was important
○ Deeply understanding use cases
○ Client performance is critical

■ Especially tricky in resource-constrained
environments

○ Being able to tune in production
○ Metrics driven validation

| 30

Future Aerospike developments we’re excited
about

● Improved client performance
● Improved XDR

| 31

Q&A

